

An Introduction to
6502 Microprocessor Applications

DT102 Curriculum Manual

 ©2009 LJ Create. This publication is copyright and no
part of it may be adapted or reproduced in any material
form except with the prior written permission of LJ Create.

Lesson Module: 8.12/1
Issue: MP615/A

An Introduction to 6502
Microprocessor Applications About this Manual

About this Manual

LJ Technical Systems i

For tomorrows' engineers and technicians, training in the use of microprocessor
systems and the design of control tasks will be very important.

We see microprocessors used in almost every area of modern life. They control
domestic appliances, automated Teller machines, VCRs, automobile engine
management and braking systems and so on - the applications are endless. In
addition to these less obvious uses, microprocessors dominate today’s working
environment in the shape of the personal computer.

To gain a good working knowledge of microprocessor technology you will need to
follow this manual carefully. It will lead you in a step by step manner through the
following areas:

 ● Using the MAC III microcomputer.
 ● Introduction to 6502 programming.
 ● Writing Machine Code Programs.
 ● Program Debugging.
 ● Using the Merlin Text Editor.
 ● Introduction to Development Systems.
 ● Addressing Modes.
 ● Negative Binary Numbers.
 ● Programs with Loops.
 ● Further Programs with Loops.
 ● Indexed Addressing.
 ● Logical and Test Instructions.
 ● Input and Output Programming
 ● Programming the Applications Module.
 ● Stacks and Subroutines.
 ● Interrupts.

As you work through each chapter you will be guided by a series of student
objectives and your progress will be continually assessed by questions in the
Exercises, Practical Assignments and Student Assessments.

 An Introduction to 6502
About this Manual Microprocessor Applications

ii LJ Technical Systems

The Practical Assignments presented throughout the manual are graded in terms of
complexity, starting with simple machine code programs and ending with more
complex programming techniques in assembler code.

Your instructor has a copy of the Solutions book for this manual. It contains all
the solutions to the assessment questions together with suggested solutions to all
the programming tasks. Copies of these programs are provided on a disk supplied
with the Solutions book.

What do I need to work through this manual?

To work through this manual you will need the following items:

1. MAC III 6502 microprocessor board.
2. Merlin Development System software pack (6502/Z80 version), including

6502 Cross Assembler Reference Manual and RS232 cable.
3. Microprocessor Applications board.
4. Personal Computer (PC) running Windows 95 or later, and fitted with

RS232 serial communications (COM) port.
5. Two 0.1” shorting leads (supplied)
6. MAC III User Manual.
7. 6502 Instruction Set Reference Manual.
8. Note pad and pencil.

In addition, you will need a power supply and a keypad/display unit. The form
that these items take will depend on whether you are using a Digiac 2000 system
or a Digiac 3000 system:

 Power supply required Keypad/display unit required
Digiac 2000 system DT60 Power Supply unit DT25 Keypad/display module
Digiac 3000 system D3000 Experiment Platform or

D3000 Virtual Instrument
Platform

D3000-8.0 Microprocessor
Master Board with built-in

keypad/display

For further information, please refer to the MAC III 6502 User Manual.

An Introduction to 6502
Microprocessor Applications About this Manual

LJ Technical Systems iii

Computerized Assessment of Student Performance

If your laboratory is equipped with the DIGIAC 3000 Computer Based Training
System, then the system may be used to automatically monitor your progress as
you work through this manual.

If your instructor has asked you to use this facility, then you should key in your
responses to the questions in this manual at your computer managed workstation.

To remind you to do this, a

symbol is printed alongside questions that

require a keyed-in response.

The following D3000 Lesson Module is available for use with this manual:

D3000 Lesson Module 8.12

Additional Teachware

If you are encountering microprocessors for the first time, it is recommended that
you begin by reading the manual "An Introduction to Microprocessor
Technology", which is available from LJ Technical Systems.

Other manuals available in this range are:

An Introduction to 6502 Microprocessor Troubleshooting.
An Introduction to Z80 Microprocessor Applications.
An Introduction to Z80 Microprocessor Troubleshooting.
68000 Microprocessor Concepts and Applications.
An Introduction to 68000 Microprocessor Applications.

 An Introduction to 6502
About this Manual Microprocessor Applications

iv LJ Technical Systems

Contents An Introduction to 6502
 Microprocessor Applications

Contents

LJ Technical Systems

Curriculum Text Pages

Chapter 1 Using the MAC III Microcomputer ..1 - 20

Chapter 2 Introduction to 6502 Programming ...21 - 36

Chapter 3 Writing Machine Code Programs ..37 - 54

Chapter 4 Program Debugging ..55 - 64

Chapter 5 Using the Merlin Text Editor ..65 - 76

Chapter 6 Introduction to Development Systems ..77 - 100

Chapter 7 Addressing Modes ...101 - 118

Chapter 8 Negative Binary Numbers ..119 - 128

Chapter 9 Programs with Loops ...129 - 154

Chapter 10 Further Programs with Loops...155 - 166

Chapter 11 Indexed Addressing ...167 - 182

Chapter 12 Logical and Test Instructions ...183 - 198

Chapter 13 Input and Output Programming ...199 - 218

Chapter 14 Programming the Applications Module ..219 - 246

Chapter 15 Stack and Subroutines ...247 - 270

Chapter 16 Interrupts .. 271 – 298

An Introduction to 6502 Contents
Microprocessor Applications

 LJ Technical Systems

Appendices Pages

Appendix 1 Standard Programming Sheet ..299 - 300

Appendix 2 MAC III System Calls ..301 - 310

Appendix 3 ASCII Codes ..311 - 312

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

Chapter 1 Using the MAC III Microcomputer

LJ Technical Systems 1

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Connect the MAC III Microcomputer, Keypad/display
unit and Applications Module.

 Connect power to the MAC III Microcomputer and the
Applications Module.

 Run the Applications Module demonstration programs.

 Select each section of the Applications Module
demonstration program:

• Analog to Digital Conversion.
• Optical Link.
• Proximity Detector.
• Distance Measurement.
• Constant Motor Speed Control.
• Variable Motor Speed Control.
• Beam Interruption.
• Optical Feedback.

Equipment
Required for
this Chapter

 MAC III 6502 Microcomputer.
 Applications Module.
 Power supply.
 Keypad/display unit.
 MAC III 6502 User Manual.

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

2 LJ Technical Systems

1.1 Introduction

This chapter is designed to introduce you to running programs on the MAC III,
and to familiarize you with the transducers available on the Applications Module.

 Connect the following items by referring to the MAC III User Manual:

MAC III 6502 Microcomputer
Power supply
Keypad/display unit
Applications Module

If you are using a Digiac 2000 system, refer to the User Manual chapter
titled Digiac 2000 Connections.

To connect a Digiac 3000 system, refer to Digiac 3000 Connections
chapter of the User Manual.

 1.1a The Keypad/display is connected to the MAC III Microcomputer
using:

 a one 9-wire cable.

 b one 5-wire cable.

 c one 16-wire cable.

 d two 9-wire cables.

 1.1b Power is connected to the Applications Module using:

 a one cable terminated in a 9-pin connector.

 b one cable terminated in a 5-pin connector.

 c one cable terminated in a 16-pin connector.

 d two cables, each terminated in a 9-pin connector.

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 3

• Switch on the power supply. If you are not sure how to do this, refer to the
 MAC III User Manual.

The MAC III display should now show:

If this does not happen, switch the power off, check the connections and try
again.

Press G followed by F 6 0 0

Press G again to run the program.

The message “APPLICAtIONS” will move quickly across the display, followed
by the word "SELECt" for about one second thus:

This is followed by the static display:

This indicates that the first of the demonstration programs has been selected.
Other demonstration programs can be selected by using the + or - key.

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

4 LJ Technical Systems

1.2 Analog to Digital Conversion

The Analog to Digital Conversion Demonstration Program will continually
sample the potentiometer output, via the ADC and display a hexadecimal value
between 00H and FFH, depending upon the position of the potentiometer wiper. It
is important that the slider switch next to the ADC is set to its lower position so
that the potentiometer is connected to the ADC.

Potentiometer and ADC Switch

Having set the slider switch the Analog to Digital Conversion Demonstration
Program can be executed thus: Use the + or - keys to select “AnLoG” and

press the G key once. Adjust the potentiometer over its full range. The display
will vary between 00H and FFH. A typical display might be:

 1.2a Turn the potentiometer fully clockwise. Enter the hexadecimal value
shown on the display.

If the G key is held down then released, this program is halted. Another

demonstration program can be selected, using the + and - keys.

The other demonstration programs are explained on the following pages.

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 5

1.3 Optical Link

This demonstration program will continually sample the potentiometer output, via
the ADC and then output the current value to the DAC. This analog output is then
passed to the Optical Sender LED. The hexadecimal value output will also be
displayed. Both the ADC and DAC slider switches should be set to their lower
positions.

Optical Sensors

Use the + or - key to select “LInK” and press the G key. Adjust the
potentiometer over its full range. The display will vary between 00H and FFH. A
typical display might be:

Note that the brightness of the optical sender LED will also vary correspondingly.
The LEDs D0 to D7 show the data output from the MAC III to the optical sender.
This is the binary equivalent of the hexadecimal value on the MAC III display.

 1.3a Turn the potentiometer fully counter-clockwise. Enter the hexadecimal
value shown on the display.

If the G key is held down then released, this program is halted. Another

demonstration program can be selected, using the + and - keys.

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

6 LJ Technical Systems

 1.4 Proximity Detector

This demonstration program uses the ultrasonic transmitter and receiver as a
proximity detector. The piezo sounder functions as an alarm and the display
changes as an object is detected. The sensitivity of the detector can be adjusted
using the “gain” control in the Ultrasonic Module block.

Ultrasonic Module and Piezo Sounder

Use the + or - key to select “ProX” and press the G key. Adjust the gain
control clockwise until the alarm sounds, then turn it counter-clockwise until the
alarm is just switched off. The display will read:

An object placed directly above the ultrasonic receiver and transmitter will be
detected up to a distance of approximately 20 centimeters. When an object is
detected, the alarm will sound and the display changes to:

 If the G key is held down then released, this program is halted. Another

demonstration program can be selected, using the + and - keys.

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 7

 1.5 Distance Measurement

This demonstration program uses the ultrasonic transmitter and receiver to
measure the distance of an object above the board. The program calculates the
distance by measuring the time delay between the transmission of an ultrasonic
pulse and its reflection being received. The “gain” control should initially be set
fully counter-clockwise.

Ultrasonic Module with gain control fully counter-clockwise

Use the + or - key to select “dISt” and press the G key.

Initially, the display should show:

Turn the gain control clockwise from the fully counter-clockwise position until
the display shows '000', then turn the control slowly counter-clockwise until '---'
is once again displayed. The display will now show the height of an object above
the board (in centimeters). For example:

If the G key is held down then released, this program is halted. Another

demonstration program can be selected, using the + and - keys.

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

8 LJ Technical Systems

 1.6 Constant Motor Speed Control

This demonstration program will cause the motor to run at a constant speed of
100 revolutions per second (rps). The motor “load” control can be used to vary
the motor load. The program will compensate for these variations in load by
changing the value sent to the DAC. This will allow the speed to be maintained at
a constant 100 rps. The LED’s D0 to D7 display the data being sent from the
MAC III Microcomputer to the DAC. The DAC slider switch should be set to its
upper position.

DAC Switch

Use the + or - key to select “Motor” and press the G key. Use the motor
“load” control to vary the loading on the motor. Notice that the speed is kept
constant at 100 rps although the input to the DAC (as indicated by D0 to D7)
varies as the program compensates for load variations.

1.6a With the constant speed control program running, turn the "LOAD"
control fully clockwise. Wait for 5 seconds and then enter the motor
speed value shown on the display.

If the G key is held down then released, this program is halted. Another

demonstration program can be selected, using the + and - keys.

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 9

 1.7 Variable Motor Speed Control

This demonstration program will cause the motor to run at a desired set speed,
depending upon the setting of the potentiometer. The DAC slider switch should
be set to its upper position and the ADC slider switch to its lower position. Also
the 'Load' control in the Motor Module block should be turned to the fully
clockwise (maximum load) position.

Correct positions of 'LOAD' control and ADC/DAC switches

Turn the potentiometer fully counter-clockwise, as shown below.

POTENTIOMETER

0V

VREF
6

5

0V

Potentiometer fully counter-clockwise

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

10 LJ Technical Systems

Use the + or - key to select “rPS” and press the G key.

The display will show “000” and the motor will not rotate.

Gradually turn the potentiometer clockwise and the motor will rotate at the speed
set by the potentiometer position.

The LED’s D0 to D7 show the data output from the MAC III to the DAC.

PORT
MONITOR

D0

D1

D2

D3

D4

D5

D6

D7 7

0

Port Monitor

 1.7a With the speed control program running, turn the potentiometer fully
clockwise. Wait for 5 seconds and then enter the motor speed value
shown on the display.

If the G key is held down then released, this program is halted. Another

demonstration program can be selected, using the + and - keys.

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 11

1.8 Beam Interruption

In this demonstration program the MAC III uses the DAC to fully turn on the
optical sender LED. The optical receiver output is returned, via the ADC, to the
MAC III. A hexadecimal value is displayed by the MAC III to indicate the
intensity of light falling upon the optical receiver. The program will compare this
hexadecimal value with the arbitrary value 15H and use the piezo sounder as an
alarm signal if the light level falls below this value. The DAC slider switch
should be set to the lower position and the ADC slider switch to the upper
position.

Switch Positions

Use the + or - key to select “bEAM” and press the G key. The display might
typically look like the one below, although the number displayed may be
different:

The alarm will sound if the optical link is broken (for example, by placing a piece
of paper between the sender and receiver). The light intensity is displayed by the
MAC III as a hexadecimal value.

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

12 LJ Technical Systems

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 13

If the ambient lighting level is high, the light level at the receiver may exceed the
threshold, even when the sender is blocked off. Fortunately the demonstration
program allows the user to change the threshold level from its initial value of 15H.

The procedure is as follows:

 Press and release the RESET key on the MAC III main board. The display
will show:

 Press M and the display will show:

 Use the Hexadecimal Keypad to change the display to

 by pressing the following keys in sequence: 0 0 4 1

 Press M again and the display will show:

 The last two digits are the threshold value 15H.

 Use the Hexadecimal Keypad to change the threshold value (15H) to the
desired level (higher or lower).

For example, to make the threshold value 25H: Press 2 5 .

Similarly, to make the threshold value 50H: Press 5 0 .

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

14 LJ Technical Systems

 To run the program again press G again followed by:

 F 6 0 0 and the display will show:

 Press G once more to run the Applications Demonstration program

 Use the + or - keys to select

and press the G key again to run the program with the modified threshold
value.

The significance of this procedure will be explained in subsequent chapters.

If the G key is held down then released, this program is halted. Another

demonstration program can be selected, using the + and - keys.

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 15

1.9 Optical Feedback

This demonstration program will use the optical sender LED to maintain the light
level at the receiver at a preset value, under conditions of varying ambient
lighting. The ADC slider switch should be set to the upper position and the DAC
slider switch to the lower position.

Switch positions

Use the + or - key to select:

and press the G key.

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

16 LJ Technical Systems

The display will show the current light level at the receiver as a hexadecimal
value. This will gradually increase or decrease to 15H (the preset level to be
maintained).

If the sender and receiver are covered so that the ambient light level falls, the
program will increase the brightness of the sender LED to compensate and return
the received value to 15H. Conversely, if a bright light source is brought close to
the sender and receiver, the brightness of the sender LED is reduced to return the
received value to 15H.

 1.9a With the optical feedback program running, place a piece of thin card
or paper between the optical sender and the receiver. Enter the light
intensity value shown on the display.

 1.9b With the optical feedback program running, remove any thin card or
paper between the optical sender and the receiver. Enter the light
intensity value shown on the display.

The user can adjust the preset level in a similar way to the broken beam detector
program:

● Press and release the RESET key on the MAC III board. The display will

show:

● Press M and the display will show:

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 17

● Use the Hexadecimal Keypad to change the display to

thus: 0 0 4 2

● Press M again and the display will show:

 This is the preset value 15H.

● Use the Hexadecimal Keypad to change the preset value (15H) to the desired
level.

 For example, to make the threshold level 10H: Press 1 0 .

 Similarly, to make the threshold level 35H: Press 3 5 .

● To run the program again press G followed by F 6 0 0

 and then press G again.

● Use the + or - keys to select

 and press G once more to run the program with the modified threshold

value.

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

18 LJ Technical Systems

If the G key is held down then released, this program is halted.

Another demonstration program can be selected, using the + and - keys.

Turn off the power supply before continuing to the next chapter.

An Introduction to 6502 Using the MAC III Microcomputer
Microprocessor Applications Chapter 1

LJ Technical Systems 19

 Student Assessment 1

 1. The MAC III Microcomputer is connected to the Applications Module using:

 a one 9-wire cable.

 b one 5-wire cable.

 c one 16-wire cable.

 d two 9-wire cables.

 2. The Applications Module power cable is connected in the:

 a bottom right hand corner of the Applications Module.

 b bottom left hand corner of the Applications Module.

 c top right hand corner of the Applications Module.

 d top left hand corner of the Applications Module.

 3. When power is applied to the MAC III Microcomputer, the display shows:

 a '0400'.

 b 'rEAdy'.

 c 'SELECt'.

 d 'WAItIng'.

 4. The Applications Module demonstration program is executed by pressing:

 a F 6 0 0 G

 b G F 6 0 0 G

 c 0 0 1 5 G

 d G 0 0 1 5 G

Using the MAC III Microcomputer An Introduction to 6502
Chapter 1 Microprocessor Applications

20 LJ Technical Systems

Student Assessment 1 Continued ...

 5. When the Applications Module demonstration program is run, the display sequence
is:

 a "APPLICAtIONS", "SELECt", then "AnLOG".

 b "SELECt", "APPLICAtIONS", then "AnLOG".

 c "RUNNING", "APPLICAtIONS", "SELECt", then "AnLOG".

 d "RUNNING", "SELECt", "APPLICAtIONS", then "AnLOG".

 6. The keys which are used to select different sections of the Applications Module
 demonstration software are:

 a + and -

 b G and R

 c L and S

 d M and P

 7. When the Variable Motor Speed Control section of the Applications Module
 demonstration software is selected, the display will show:

 a "LInk".

 b "mOtOr".

 c "PrOH".

 d "rPS".

An Introduction to 6502 Introduction to 6502 Programming
Microprocessor Applications Chapter 2

Chapter 2 Introduction to 6502 Programming

LJ Technical Systems 21

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Examine and modify the contents of MAC III memory.

 Explain the need for:
 machine language.
 machine code.
 assembly language.

 Interpret the MAC III Memory Map.

 Use the keypad to key in and execute a machine code
program.

Equipment
Required for
this Chapter

• MAC III 6502 Microcomputer.
• Applications Module.
• Power supply.
• Keypad/display unit.
• MAC III 6502 User Manual.

Introduction to 6502 Programming An Introduction to 6502
Chapter 2 Microprocessor Applications

22 LJ Technical Systems

Introduction

 Connect the following items by referring to the MAC III User Manual:

MAC III 6502 Microcomputer
Power supply
Keypad/display unit

If you are using a Digiac 2000 system, refer to the User Manual section
titled Digiac 2000 Connections.

To connect a Digiac 3000 system, refer to Digiac 3000 Connections
section of the User Manual.

Note that the Applications Module will not be required initially.

 2.1 MAC III Memory

Switch the power on. The MAC III display will show:

An Introduction to 6502 Introduction to 6502 Programming
Microprocessor Applications Chapter 2

LJ Technical Systems 23

Press M and the display will show:

This means that location 0400H is currently selected. Pressing any of the
hexadecimal keys will change the currently selected memory location.

Press F F F B and the display shows:

This means that location FFFBH has been selected.

Press M again and the display will show:

This indicates that the contents of location FFFBH are E0H. This is actually a
location within the Monitor EPROM and cannot be altered by the user.

Introduction to 6502 Programming An Introduction to 6502
Chapter 2 Microprocessor Applications

24 LJ Technical Systems

SWITCHED
FAULTS

MONITOR EPROM

CO-FF
RAM

00-1F
USER EPROM

A0-BF

1 2 3 4 5 6 7 8

III 6502

MAC III board with Monitor EPROM arrowed.

The + and - keys can be used to select the next or previous location
respectively.

Use the + key to step forward through a few locations. Notice that the contents

will usually be different in each location. If the + or - key is held down, the
function repeats until the key is released.

Switch off the power for a few seconds and then switch on again. Examine
memory location FFFBH again. Notice that the contents of this location have not
changed (they are still E0H). Recall that ROM is non-volatile.

Press M and use the hexadecimal keys to select location 0500H. Use the M key
to discover the contents of this location. If the MAC III has just been switched on,
the contents of 0500H will probably be FFH.

An Introduction to 6502 Introduction to 6502 Programming
Microprocessor Applications Chapter 2

LJ Technical Systems 25

This location is within the RAM IC and so may be altered by the user as desired.

SWITCHED
FAULTS

MONITOR EPROM

CO-FF
RAM

00-1F
USER EPROM

A0-BF

1 2 3 4 5 6 7 8

III 6502

MAC III board with RAM arrowed.

The hexadecimal keys may now be used to change the contents of location 0500H.
Experiment with changing the contents of this and other RAM locations. Notice
that if a location lies outside user RAM, the fourth decimal point display is lit as a
warning.

Use the hexadecimal keypad to change the contents of location 0500H to ABH.

Switch off the power for a few seconds and then switch on again. Examine
memory location 0500H again. Notice that the contents of this location have
changed. Recall that RAM is volatile and so its contents are lost when the power
is switched off.

 2.1a Enter the hexadecimal contents of the MAC III memory location
FFFDH.

Introduction to 6502 Programming An Introduction to 6502
Chapter 2 Microprocessor Applications

26 LJ Technical Systems

 2.2 Programming Levels

The microprocessor is only capable of interpreting data which is presented in
binary form. This is called machine language. Programs written in machine
language will be much more efficient in terms of memory space and execution
time than those written in many high level languages (for example, BASIC).

Program
Idea

High Level
Language

Machine
Language

Since machine language programs are written in the microprocessor’s own
“language” the programmer will require quite detailed knowledge of the
microprocessor to be used.

Program
Idea

Machine
Language

Now, although the microprocessor uses binary data, programs written in binary
are prone to error in transcription and are very time-consuming to write.
Hexadecimal provides a convenient substitute, requiring very little in the way of
conversion. Almost all microprocessors can be programmed using hexadecimal
numbers to represent instructions and data. This type of programming is called
machine code programming. The MAC III can be programmed in machine code
by means of the keypad.

Even machine code is rather difficult for the programmer to remember accurately
so it is usual for programs to be written on paper using mnemonic codes. These
are an easily-remembered system of abbreviations for each microprocessor
instruction. Programming using mnemonic codes is referred to as assembly
language programming.

So, in order to write a program for a microprocessor:

■ Assembly language program is written on paper.

■ Assembly language program is coded into machine code.

■ Machine code program is executed by microprocessor.

The instruction set is a listing of all the mnemonics and corresponding machine
code for a given microprocessor. The instruction set for one type of
microprocessor (for example, 6502) will not apply to another type of
microprocessor (for example, Z80). There are however some exceptions to this
rule.

An Introduction to 6502 Introduction to 6502 Programming
Microprocessor Applications Chapter 2

LJ Technical Systems 27

 2.2a An easily-remembered abbreviation used when writing a
microprocessor instruction is called a:

 a Binary Code.

 b Hexadecimal Code.

 c Machine Code.

 d Mnemonic Code.

 2.2b Programming using mnemonic codes is called:

 a Assembly Language Programming.

 b High Level Language Programming.

 c Machine Language Programming.

 d Program Language Programming.

Before a program can be entered into a microcomputer system, it will be
necessary to know which areas of RAM are available. A memory map will show
memory usage in a diagrammatic form. The memory map for the MAC III is
shown below:

0000

1FFF
2000

FFFF

C000

A000

UNUSED

RAM

USER EPROM

03FF
0400

0000

1FFF

 8K
EPROM

 16K
EPROM

MONITOR
EPROM

DISPLAY LATCH
7000

8000
DUART

6522 VIA
9000

E000

USER RAM

SYSTEM RAM

USER STORAGE
SYSTEM RAM003F

0040
00FF
0100

Introduction to 6502 Programming An Introduction to 6502
Chapter 2 Microprocessor Applications

28 LJ Technical Systems

The MAC III Memory Map shows, for example, that the monitor EPROM has an
address range from C000H to FFFFH and that the MAC III RAM occupies
addresses from 0000H to 1FFFH.

 2.2c The function of the section of MAC III Memory that includes location
0800H is:

 a Monitor EPROM.

 b System RAM.

 c User EPROM.

 d User RAM.

An Introduction to 6502 Introduction to 6502 Programming
Microprocessor Applications Chapter 2

LJ Technical Systems 29

 2.3 Programming the Microprocessor

You will already have used the MAC III microcomputer for the Applications
Module demonstration programs.

These programs were previously stored in the Monitor EPROM. Now you can
key in a short program into RAM for the Applications Module.

 Connect the Applications Module by referring to the MAC III User Manual.

If you are using a Digiac 2000 system, refer to the User Manual section
titled Digiac 2000 Connections.

To connect a Digiac 3000 system, refer to Digiac 3000 Connections
section of the User Manual.

Switch the power on. The display will show:

Introduction to 6502 Programming An Introduction to 6502
Chapter 2 Microprocessor Applications

30 LJ Technical Systems

The MAC III may be programmed by placing the correct machine code in
successive memory locations. You are now going to key in a machine code
program. Select location 0500H thus:
Press M followed 0 5 0 0 . The display will show :

Press M again and the display will show :

Where “HH” represents the current contents of location 0500H. This will probably
be FFH if you have just switched on. Change the contents of 0500H to A9H by
pressing A 9 . Now press the + key to move on to location 0501H. The
whole program listed below can now be entered by repeating the above procedure
for each location.

 Location Contents
 0500 A9
 0501 FF
 0502 8D
 0503 03
 0504 90
 0505 AD
 0506 00
 0507 10
 0508 8D
 0509 01
 050A 90
 050B 60

 1000 88

An Introduction to 6502 Introduction to 6502 Programming
Microprocessor Applications Chapter 2

LJ Technical Systems 31

It is not important at this stage to understand exactly how this program works. In
fact, it will display the contents of memory location 1000H as a binary pattern on
the Applications Module Port Monitor (labeled D0 to D7).

You are now ready to run this program.

Press the G key once and the display will show:

This is the address from which program execution will begin.

Change this to 0500H by keying in 0 5 0 0 .

Press the G key once again and the program will run.

The Applications Module Port Monitor should now show:

 D7 D6 D5 D4 D3 D2 D1 D0

 lit

 unlit

This is 1000 10002 (88H) - the value which was programmed into location 1000H.
If you do not see this output on the port monitor, check the following:

• Has the machine code been correctly entered?
• Is the Applications Module connected to the MAC III?
• Is the power correctly connected to the Applications Module?

Change the value in location 1000H and run the program again. Experiment with
several other values in location 1000H.

Introduction to 6502 Programming An Introduction to 6502
Chapter 2 Microprocessor Applications

32 LJ Technical Systems

 2.3a Stop the program, change the data at location 1000H to 72H and run
the program again. The pattern shown on the Applications Module

Port Monitor LEDs (= lit, = unlit) is:

a D7 D6 D5 D4 D3 D2 D1 D0

b D7 D6 D5 D4 D3 D2 D1 D0

c D7 D6 D5 D4 D3 D2 D1 D0

d D7 D6 D5 D4 D3 D2 D1 D0

An Introduction to 6502 Introduction to 6502 Programming
Microprocessor Applications Chapter 2

LJ Technical Systems 33

 Student Assessment 2

 1. The data word at MAC III memory address E0DCH is:
 a 60H

 b 6CH

 c DCH

 d E0H

 2. The keystrokes required to change the contents of location 0407H to B2H are:
 a B 2 M 0 4 0 7

 b M B 2 M 0 4 0 7

 c 0 4 0 7 M B 2

 d M 0 4 0 7 M B 2

 3. The form in which machine language is presented to the microprocessor is:
 a Binary.

 b Octal.

 c Decimal.

 d Hexadecimal.

 4. Giving instructions to the microcomputer in hexadecimal form is called:
 a Assembly Language Programming.

 b Coding.

 c High Level Programming.

 d Machine Code Programming.

Continued ...

Introduction to 6502 Programming An Introduction to 6502
Chapter 2 Microprocessor Applications

34 LJ Technical Systems

 Student Assessment 2 Continued ...

 5. Programming using mnemonic codes is called:
 a Assembly Language Programming.

 b Coding.

 c High Level Programming.

 d Machine Code Programming.

 6. The area of MAC III memory available for User Programs is:
 a 0000H to 003FH

 b 0100H to 03FFH

 c 0400H to 1FFFH

 d 2000H to 6FFFH

 7. The function of the MAC III memory area A000H to BFFFH is:
 a RAM.

 b Monitor EPROM.

 c System RAM.

 d User EPROM.

 8. The key used to enter the memory examination mode is:
 a +

 b -

 c L

 d M

An Introduction to 6502 Introduction to 6502 Programming
Microprocessor Applications Chapter 2

LJ Technical Systems 35

 Student Assessment 2 Continued ...

 9. The keystrokes required to run the program which starts at location 1000H are:
 a 1 0 0 0 G

 b G 1 0 0 0

 c G 1 0 0 0 G

 d L 1 0 0 0 G

Introduction to 6502 Programming An Introduction to 6502
Chapter 2 Microprocessor Applications

36 LJ Technical Systems

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

Chapter 3 Writing Machine Code Programs

LJ Technical Systems 37

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Explain the action of fundamental microprocessor
instructions:
 Load
 Add
 Decrement
 Increment
 Jump

 Describe the functions of operators and operands.

 Code an Assembly Language program.

 Write simple Assembly Language programs.

Equipment
Required for
this Chapter

• MAC III 6502 Microcomputer.
• Applications Module.
• Power supply.
• Keypad/display unit.
• 6502 Instruction Set Reference Manual.
• MAC III 6502 User Manual.

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

38 LJ Technical Systems

Introduction

The 6502 has a number of special and general purpose registers. All 6502
working registers are 8 bits (byte length). For the time being we shall only
concern ourselves with the Accumulator.

The Accumulator is the primary CPU register. Most arithmetic and logical
operations take data from the accumulator. The result of such operations is then
returned to the accumulator.

 3.1 Instruction Sets

Although instruction sets differ between manufacturers, certain fundamental
types of instruction are common to almost all microprocessors:

Load This will duplicate the contents of a memory location within the

Accumulator.

Store This will duplicate the contents of the Accumulator within a

memory location.

Add This will add the contents of one general purpose register or

memory location with those of another general purpose register or
memory location and place the result in the accumulator.

Decrement This will subtract one from the contents of a specified register or

memory location.

Increment This will add one to the contents of a specified register or memory

location.

Jump This will always cause program execution to continue from a

specified location other than the next location in sequence.

 3.1a Enter the number of bits within the 6502 Accumulator.

 3.1b A memory location initially contains the value 45H. Enter the
hexadecimal contents of this location after a 'Decrement' instruction
has been executed.

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

LJ Technical Systems 39

 3.2 Instruction Mnemonics

It can be rather time-consuming and tedious to write each of these instructions out
in full each time that they are required. Consequently, instructions are generally
abbreviated to a 3-letter mnemonic. Some 6502 instruction mnemonics are given
below:

 Instruction Mnemonic

 Load LDA
 Add ADC
 Decrement DEC
 Increment INC
 Jump JMP

 3.3 Operators and Operands

Microprocessor instructions can be thought of as consisting of two distinct parts:

OPERATOR

INSTRUCTION

OPERAND

Operator

This is the part of an instruction that defines the operation which must take place.
For example “Load”.

Operand

This provides any additional information necessary for the microprocessor to
complete the instruction. For example if the operator is “Load...” then the operand
might be “...the accumulator with the hexadecimal value 3BH”. Then the overall
instruction would be: “Load the accumulator with the hexadecimal value 3BH”.
Some instructions do not require an operand.

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

40 LJ Technical Systems

3.4 Simple Programs

As mentioned in the previous chapter, the microprocessor can only interpret
instructions given in binary form. These binary instruction codes are referred to
as opcodes. The instruction set will include the opcode for every instruction. A
list of instruction codes for the 6502 microprocessor is given in the 6502
Instruction Set Reference Manual. For convenience, these codes are expressed in
hexadecimal form.

 3.5 Worked Example

Write a program that will place the value 65H in memory location 1000H.

Solution:

Although this is a very simple program, it is good practice to first draw a
flowchart:

START

Load the
Accumulator

with the value 65H

Store the
accumulator in
location 1000H

END

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

LJ Technical Systems 41

The assembly language program will be:

 LDA #$65
 STA $1000
 RTS

This program will be much easier to understand if comments are added. It is
conventional for comments to be prefixed by a semi-colon thus:

 LDA #$65 ;Loads accumulator with 65H
 STA $1000 ;Saves the contents of the
 ;accumulator in location 1000H
 RTS ;Returns to the MAC III system

The last instruction (RTS) will return control to the MAC III monitor program
after execution of a user program. The precise nature of this instruction is
unimportant for the time being.

It is now necessary to look-up the opcodes or code the program. The opcodes will
be found in the 6502 Instruction Set Reference Manual.

Take the first instruction (LDA #$65):

Turn to the 6502 instruction set and find the “load accumulator" instruction
(LDA). The addressing mode here is immediate. More information concerning
6502 Addressing Modes is given in a later chapter. Notice from the instruction set
that the correct opcode for LDA is A9H. Now, this is the operator. The CPU will
interpret this code as "Load the accumulator with the hexadecimal value found in
the next byte of memory". Clearly then, the following byte of memory must take
the value 65H. This is the operand.

The first instruction is now coded. The codes are usually written thus:

Machine Code Assembly Lang. Comments

A9 65 LDA #$65 ;Loads accumulator with
 ;65H
 STA $1000 ;Saves accumulator contents
 ;in location 1000H
 RTS ;Returns to the MAC III system

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

42 LJ Technical Systems

The next instruction is "store the contents of the accumulator in location 1000H".
This can now be coded, again by reference to the 6502 Instruction Set.

This time the required mnemonic is STA. You will again find this in the 6502
Instruction Set Reference Manual. Here the required addressing mode is
absolute. Again, the topic of addressing modes will be studied in a subsequent
chapter. The correct opcode for an absolute STA is 8DH. Now, the CPU will
interpret this code as "Save the contents of the Accumulator in the memory
location specified by the next two bytes of memory". Clearly then this instruction
will also require an operand but here it will be an address rather than data. The
required address is 1000H.

The 6502 expects address operands to be placed in memory low byte first, so this
instruction can now be coded thus:

Machine Code Assembly Lang. Comments

A9 65 LDA #$65 ;Loads accumulator with
 ;65H
8D 00 10 STA $1000 ;Saves accumulator contents
 ;in location 1000H
 RTS ;Returns to the MAC III system

You will notice that in 6502 Assembly Language, a hexadecimal operand value
is indicated by a dollar ($) symbol immediately before the value.

The last instruction may now be coded, again by reference to the 6502 Instruction
Set Reference Manual. Find the "Return From Subroutine" (RTS) instruction. The
topic of subroutines will be covered in one of the subsequent chapters. From the
Instruction Set you should find that the correct opcode for RTS is 60H. Notice
that there is no choice of addressing modes in this case.

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

LJ Technical Systems 43

The coding is now complete:

Machine Code Assembly Lang. Comments

A9 65 LDA #$65 ;Loads accumulator with
 ;65H
8D 00 10 STA $1000 ;Saves accumulator contents
 ;in location 1000H
60 RTS ;Returns to the MAC III system

All that is required now is to specify the memory locations which this program
will occupy. Anywhere in user RAM may be chosen. For example: starting at
0400H:

Address Machine Code Assembly Lang. Comments

0400 A9 65 LDA #$65 ;Loads accumulator
 ;with 65H
0402 8D 00 10 STA $1000 ;Saves the contents
 ;of accumulator in
 ;location 1000H
0405 60 RTS ;Returns to the
 ;MAC III System

This type of layout is a widely accepted convention. However, it may be modified
slightly. A common variation is to explicitly state the contents of each location
(as shown below).

This method of laying out programs is probably easier to understand in the initial
stages of learning machine code programming.

Address Machine Code Assembly Lang. Comments

0400 A9 LDA #$65 ;Loads accumulator
0401 65 ;with 65H
0402 8D STA $1000 ;Saves the contents
0403 00 ;of accumulator in
0404 10 ;location 1000H
0405 60 RTS ;Returns to the
 ;MAC III System

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

44 LJ Technical Systems

Whichever convention you choose to adopt, it is recommended that you always
write your programs under the headings shown in the previous tables. However,
in order to save space in this manual, these headings will not be shown in
subsequent program listings.

A Standard Programming Sheet is given in Appendix 1. This may be photocopied
for use in writing machine code programs. Notice that there is an extra column
marked "Label". It is useful in longer programs and particularly in those with
loop structures, to "label" certain locations. This technique will be explained at a
later stage.

Having written the program on paper, it will be necessary to key it into the
microcomputer.

 3.5a Enter the hexadecimal byte that must be placed in location 0404H.

 3.5b In the instruction " LDA #$65 ", the operand is:

a LDA

b #$65

c 0400H

d 1000H

Now enter the program into the MAC III, using the M and hexadecimal keys.

Run this program, using the G and hexadecimal keys. Remember that the start
address is 0400H. Having run this program, the display should show:

Use the M and hexadecimal keys to read the contents of location 1000H. The
contents of this location should be 65H after the program has been executed. If
this does not happen, check that the machine code been correctly entered.

If the correct machine code has not been entered, repeat the procedure, paying
particular attention to the required keystrokes.

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

LJ Technical Systems 45

 3.5c The program in Worked Example 3.5 is to be modified so that the
value 88H is placed in location 1000H. The memory location that
must be changed is:

a 0400H

b 0401H

c 0402H

d 0403H

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

46 LJ Technical Systems

 3.6 Worked Example

Write a program, starting at location 0600H, which will add the values 12H and
34H and then save the result in location 1020H.

Solution:

Load the Accumulator
with 12H

Add 34H to
Accumulator

Save result in
location 1020H

START

END

Select Binary
Arithmetic Mode

The 6502 Microprocessor is capable of performing addition in two ways, or
modes. These are binary mode and decimal mode.

In binary mode, two binary numbers are added to give a binary result. Binary
mode is the usual arithmetic mode for the 6502, and is the mode that will
normally be used in this manual.

The other arithmetic mode, decimal mode, will be explained in Chapter 7.

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

LJ Technical Systems 47

Before the 6502 performs an addition, an instruction is required to select the
required arithmetic mode. For binary mode, the instruction is:

 CLD ;Selects binary arithmetic mode

This instruction will be explained in more detail in Chapter 7. For now, you just
need to remember to include it at the beginning of any program that performs
binary addition or subtraction.

We will now consider the instructions required to perform the addition itself.

The 6502 instruction set will only allow addition to take place between the
accumulator and a memory location. Consequently it will be necessary to place
one value in the accumulator and then add the other value to the contents of the
accumulator.

The resulting assembly language program will be:

 CLD ;Selects binary arithmetic mode

 LDA #$12 ;Loads accumulator with 12H

 ADC #$34 ;Adds 34H to accumulator

 STA $1020 ;Saves accumulator in 1020H

 RTS ;Returns to MAC III System

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

48 LJ Technical Systems

Again, referring to the 6502 Instruction Set Reference Manual for the coding will
give:

0600 D8 CLD ;Selects binary arithmetic mode
0601 A9 LDA #$12 ;Loads accumulator with 12H
0602 12
0603 69 ADC #$34 ;Adds 34H to accumulator
0604 34
0605 8D STA $1020 ;Saves accumulator in 1020H
0606 20
0607 10
0608 60 RTS ;Returns to MAC III System

Having written this program, enter it into the MAC III and execute. Examine the
contents of memory location 1020H after execution of this program. Check that it
contains 46H (i.e. 12H + 34H). Now, location 1020H will probably contain 46H
(i.e. the correct result). However, it may have given the result 47H. This is
because the 6502 Add instruction is actually an Add With Carry.

This means that the current state of the Carry Flag is added to the result. So, the
Carry Flag must be cleared prior to addition. We shall examine the Carry Flag in
more detail at a later stage. For the time being just remember that the Carry Flag
should be cleared before the ADC instruction.

The Carry Flag is cleared by the "Clear the Carry Flag" (CLC) instruction. So this
must be inserted into our assembly language program thus:

 CLD ;Selects binary arithmetic mode

 LDA #$12 ;Loads accumulator with 12H

 CLC ;Clears the Carry Flag

 ADC #$34 ;Adds 34H to accumulator

 STA $1020 ;Saves accumulator in 1020H

 RTS ;Returns to MAC III System

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

LJ Technical Systems 49

This program can be re-coded thus:

0600 D8 CLD ;Selects binary arithmetic mode

0601 A9 LDA #$12 ;Loads accumulator with 12H
0602 12

0603 18 CLC ;Clears the Carry Flag

0604 69 ADC #$34 ;Adds 34H to accumulator
0605 34

0606 8D STA $1020 ;Saves accumulator in 1020H
0607 20
0608 10

0609 60 RTS ;Returns to MAC III System

Modify the program in the MAC III and place a known value in location 1020H.
Run the program and re-examine location 1020H to verify correct operation.

 3.6a The re-coded program in Worked Example 3.6 is to be modified so
that the result is saved in location 1040H. Enter the byte that must
be placed in location 0607H.

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

50 LJ Technical Systems

 3.7 Worked Example

Write a program, starting at location 0700H, which will exchange the contents of
locations 1030H and 1040H.

Solution:

This program will require the use of a temporary store. It is convenient to use
another memory location, say location 1050H for this purpose.

START

END

Load the accumulator
from location

1030H

Save the accumulator
in location 1050H

Load the accumulator
from location 1040H

Save the
accumulator in
location 1030H

Load the accumulator
from location 1050H

Save the
accumulator in
location 1040H

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

LJ Technical Systems 51

The assembly language program will be:

 LDA $1030 ;Loads accumulator from 1030H

 STA $1050 ;Saves accumulator in location 1050H
 ;- Temporary Store

 LDA $1040 ;Loads accumulator from location 1040H

 STA $1030 ;Saves accumulator in location 1030H

 LDA $1050 ;Loads accumulator from 1050H

 STA $1040 ;Saves accumulator in location 1040H

 RTS ;Returns to MAC III system

This program is coded using the Absolute Addressing modes for LDA and STA
thus:

0700 AD LDA $1030 ;Loads accumulator from 1030H
0701 30
0702 10

0703 8D STA $1050 ;Saves accumulator in location 1050H
0704 50 ;- Temporary Store
0705 10

0706 AD LDA $1040 ;Loads accumulator from location 1040H
0707 40
0708 10

0709 8D STA $1030 ;Saves accumulator in location 1030H
070A 30
070B 10

070C AD LDA $1050 ;Loads accumulator from 1050H
070D 50
070E 10

070F 8D STA $1040 ;Saves accumulator in location 1040H
0710 40
0711 10

0712 60 RTS ;Returns to MAC III system

 3.7a Write a program, starting at memory location 0900H, which will add
the hexadecimal values 56H and 78H. The result should then be
saved in memory location 1060H. Run your program and then
examine the contents of location 1060H. Enter the byte that you find
at this location.

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

52 LJ Technical Systems

 Student Assessment 3

 1. The primary 6502 Register is:
 a the Accumulator

 b the Program Counter

 c the X Register

 d the Y Register

 2. The 6502 instruction which copies the Accumulator to a specified memory location is:
 a Load.

 b Add.

 c Store.

 d Jump.

 3. The 6502 instruction which subtracts one from a specified register or memory location
 is:
 a Load.

 b Add.

 c Increment.

 d Decrement.

 4. The function of the "Load" instruction is to:
 a copy the Accumulator to a specified memory location.

 b copy a specified memory location to the Accumulator.

 c increase the contents of a specified register by one.

 d cause the program to continue from a specified address.

An Introduction to 6502 Writing Machine Code Programs
Microprocessor Applications Chapter 3

LJ Technical Systems 53

 Student Assessment 3 Continued ...

 5. The 6502 instruction which allows program execution to continue from some point
other
 than the next location in sequence is:
 a Load.

 b Add.

 c Store.

 d Jump.

 6. The part of an instruction which provides any additional information necessary to
 complete that instruction is called the:
 a Address.

 b Data.

 c Operand.

 d Operator.

 7. The part of an instruction that defines the function to be carried out is called the:
 a Address.

 b Data.

 c Operand.

 d Operator.

 8. The 6502 Assembly Language mnemonics for "copy the contents of memory location
 1100H into the Accumulator" are:
 a LDA #1100

 b LDA $1100

 c LDA #$1100

 d LDA $#1100

Continued ...

Writing Machine Code Programs An Introduction to 6502
Chapter 3 Microprocessor Applications

54 LJ Technical Systems

 Student Assessment 3 Continued ...

 9. If the carry flag has previously been cleared, the 6502 Assembly Language instruction
 "ADC $1200" will add:
 a the value 1200H to the Accumulator

 b the contents of location 1200H to the Accumulator

 c the value 1200H to a specified memory location

 d the contents of location 1200H to a specified memory location

10. The machine code for the instruction "DEC $1020" is:
 a CE 10 20

 b CE 20 10

 c DE 10 20

 d DE 20 10

 11. The 6502 Assembly Language sequence which will place the hexadecimal value CCH in
 location 10B0H is:
 a LDA #$CC
 STA $10B0

 b LDA #$CC
 STA $B010

 c STA $10B0
 LDA #$CC

 d STA $B010
 LDA #$CC

An Introduction to 6502 Program Debugging
Microprocessor Applications Chapter 4

Chapter 4 Program Debugging

LJ Technical Systems 55

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Explain the need for program debugging.

 Use the MAC III software debugging tools:

 Break Point
 Single Step

Equipment
Required for
this Chapter

• MAC III 6502 Microcomputer.
• Power supply.
• Keypad/display unit.
• MAC III 6502 User Manual.

Program Debugging An Introduction to 6502
Chapter 4 Microprocessor Applications

56 LJ Technical Systems

Introduction

Very often in machine code programming, a user-written program will not
function correctly when first executed. Such a program will require debugging to
ensure correct operation. Up to now the only debugging techniques you have used
have been simple checks for incorrectly entered machine code or incorrect
keystrokes. However, much more sophisticated debugging techniques are
provided by many microcomputers.

 4.1 Debugging Tools

The MAC III provides two basic software debugging tools which are found in
many microcomputer systems:

■ Break Point
■ Single Step

4.2 Break Point

This allows the program under test to be halted at any desired point and the
contents of registers and memory locations examined. Partial program results can
thus be inspected.

The best way to understand how break points work is to insert a break point into a
6502 program on the MAC III. Break points will only work on programs stored in
RAM. This is because a special opcode is inserted at the break point.

Enter the simple program shown below:

0400 D8 CLD ;Selects binary arithmetic mode

0401 A9 LDA #$25 ;Loads accumulator with 25H
0402 25

0403 18 CLC ;Clears the Carry Flag prior to addition

0404 69 ADC #$35 ;Adds the value 35H to the accumulator
0405 35

0406 8D STA $0500 ;Saves result in location 0500H
0407 00
0408 05

0409 60 RTS ;Returns to MAC III System

An Introduction to 6502 Program Debugging
Microprocessor Applications Chapter 4

LJ Technical Systems 57

You will now enter a break point at location 0406H so that the result of the
addition can be inspected in the accumulator.

Press the R key twice. The display will show:

This indicates that break point 1 will occur at location 0000H. The MAC III
monitor allows up to 8 break points to be set or cleared. Other break points can be
selected by pressing the + or - keys.

The location at which the break point is to be inserted can now be entered, from
the hexadecimal keypad, thus:

Press 0 4 0 6

Break point 1 is now set at location 0406H and the display shows:

Now run the program in the usual way by pressing:

G 0 4 0 0

Press the G key again and the program will run but stop at location 0406H. The
display will now show:

This indicates that a break point was found when the Program Counter reached
0406H. Press R once and the display will show:

This confirms that the program counter has reached location 0406H. This is the
address of the next instruction to be executed.

Program Debugging An Introduction to 6502
Chapter 4 Microprocessor Applications

58 LJ Technical Systems

Program execution may be continued from the break point by pressing the G
key twice.

Now, once program execution has halted at a break point, it is possible to
examine the contents of the 6502 registers. This can be a useful aid in debugging
programs. Use the R key to check that break point 1 is still set at 0406H.

Run the program again by pressing:

 G 0 4 0 0 and then by pressing the G key again.

The display will once again show:

Now, press the R key once and the display will show:

This indicates that the Program Counter contents are 0406H. Press the + key
once and the display will show:

This indicates that the Accumulator holds 5AH.

Now, refer back to the program:

0400 D8 CLD ;Selects binary arithmetic mode

0401 A9 LDA #$25 ;Loads accumulator with 25H
0402 25

0403 18 CLC ;Clears the Carry Flag prior to addition

0404 69 ADC #$35 ;Adds the value 35H to the accumulator
0405 35

0406 8D STA $0500 ;Saves result in location 0500H
0407 00
0408 05

0409 60 RTS ;Returns to MAC III System

An Introduction to 6502 Program Debugging
Microprocessor Applications Chapter 4

LJ Technical Systems 59

When the program has reached location 0406H, the values 25H and 35H have been
added. The sum of these values is 5AH, which is now in the accumulator.

Press the + key again and the display will show:

This means that the X-register contains 00H.

Pressing the + key again will give the display:

This indicates that the Y-register also contains 00H.

The uses of the X- and Y-registers will be explained in a subsequent chapter.

Press the + key again and the display will show:

The hexadecimal value 34H indicates the binary state of each bit within the status
register (sometimes called the flag register). We have only seen the carry flag so
far. This is the least significant bit of the status register (often referred to as "bit
0"). Now, 34H = 0011 01002 so the carry flag (i.e. least significant bit of the status
register) is clear. The functions of the other bits within the status register will be
explained as you progress through this manual.

Pressing the + key again will produce the display:

This refers to the Stack Pointer register, which will be explained in a later chapter.

Program Debugging An Introduction to 6502
Chapter 4 Microprocessor Applications

60 LJ Technical Systems

Press the + key once more and the display will again show:

This indicates that the current contents of the program counter register are 0406H.

The 6502 registers can be checked again by pressing the + and - keys further.
The contents of memory locations can also be checked at this stage by using the
M key.

So, a break point will allow you to check two things:

1. that the program has actually reached the break point.

2. the contents of memory locations and 6502 registers at a given point in the
program.

 4.2a Debugging is often necessary because user programs may:

 a require registers and memory locations to be specified.

 b not be entirely correct when first executed.

 c change the contents of ROM.

 d use a break point.

 4.2b The keypad sequence "R R 0 4 1 7" will:

 a allow the contents of location 0417H to be modified.

b debug the program which starts at location 0417H.

c set the Program Counter to 0417H.

d insert a break point at location 0417H.

An Introduction to 6502 Program Debugging
Microprocessor Applications Chapter 4

LJ Technical Systems 61

 4.2c The display

 indicates that:
 a the program start address is 043A H.

 b a break point will be inserted at location 043A H.

 c the contents of location 043AH are 6H.

d a break point has been reached at location 043AH.

4.3 Single Step

This allows the program under test to be halted at every instruction and the
contents of registers and memory locations examined. This allows partial results
to be inspected in the MAC III, in a similar way to break points.

The best way to understand how single step works is to step through a
MAC III program. First enter the simple program shown in the previous section
on break points.

Now press G and enter the start address of the program.

Press + and the first instruction only will be executed (In our example
program, this is the "CLD" instruction).

The display will now show:

The “S” indicates that the MAC III is operating in a Single Step mode and the
“PC.0401” that the address of the next instruction to be executed is 0401H.

Program Debugging An Introduction to 6502
Chapter 4 Microprocessor Applications

62 LJ Technical Systems

At this point you can press + again to execute the second instruction or press

R then the + key to examine the contents of the CPU registers following the
execution of the first instruction. Try examining the CPU registers at this point by
pressing R . The display should show "r.PC 0401" to confirm the Program
Counter contents.

The 6502 registers may now be cycled through, using the + and - keys. The
hexadecimal keys can also be used to alter the contents of the CPU registers at
this point if desired.

Note the accumulator contents, as these will be changed when we execute the
second instruction of our program.

The second instruction can now be executed by pressing the G key, followed by

the + key. Try this now.

The display should show:

Pressing + again will execute the next instruction. However, choose instead to

examine the contents of the registers again, by pressing the R key and then

using the + and - keys.

Notice that the accumulator now contains 25H. This is the result of executing the
second instruction ("LDA #$25").

The third instruction can be executed by pressing the G key, followed by the +
key. Once again the address of the next instruction in sequence will be shown on
the display.

An Introduction to 6502 Program Debugging
Microprocessor Applications Chapter 4

LJ Technical Systems 63

 4.3a The keypad sequence required to start a program single stepping is:

 a G +

 b R +

 c G G

 d G G R

4.4 Program Debugging

You will probably find that single stepping will prove the most useful program
debugging technique in your first few programs. Try using the single step facility
on some of the programs which you have already written.

You should be able to see the action of each instruction within the program by
examining relevant registers and memory locations at each instruction.

When a break point is reached, it is possible to then single-step to the end of the
program by pressing G + .

As your ability in writing machine code programs improves you will probably
find that you are making more and more use of both single step and break points
as the complexity of problems increases.

Program Debugging An Introduction to 6502
Chapter 4 Microprocessor Applications

64 LJ Technical Systems

 Student Assessment 4

 1. The process of finding and then correcting faults within a program is called:
 a assembling.

 b compiling.

 c debugging.

 d linking.

 2. The key which is used at a break point to examine the contents of various registers is:
 a G

 b R

 c +

 d -

 3. The key sequence required to set a break point at location 0428H is:
 a G G 0 4 2 8

 b M M 0 4 2 8

 c R R 0 4 2 8

 d S S 0 4 2 8

 4. The display

 indicates that the contents of:
 a the Accumulator are 8BH

 b the X Register are 8BH

 c the Y Register are 8BH

 d the Program Counter are 8BH

An Introduction to 6502 The Merlin Text Editor
Microprocessor Applications Chapter 5

Chapter 5 The Merlin Text Editor

LJ Technical Systems 65

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Use the Merlin text editor to create, save and search text
files.

 Access the Merlin command menus.

 Use the Merlin text editor to manipulate text

 Access the Merlin On-screen Help screens.

Equipment
Required for
this Chapter

• MAC III 6502 Microcomputer.
• Power supply.
• Keypad/display unit.
• Merlin Development System Software Pack, installed on a PC
 running Windows 95 or later. (Installation instructions are
 provided in the Getting Started book supplied with the software).
• MAC III 6502 User Manual.

The Merlin Text Editor An Introduction to 6502
Chapter 5 Microprocessor Applications

66 LJ Technical Systems

Introduction

You will have already seen that hand assembly can be a time-consuming and error-
prone process. A special computer program can be used to automatically assemble
mnemonics into a machine-code program. Such a program is called an Assembler.
The Assembler translates a source program written in mnemonics into an
executable object program (machine code).

 5.1 Text Editors

A text editor is a program that allows alphanumerical input (numbers and letters)
to be entered into memory. These are almost always in the form of ASCII
(American Standard Code for Information Interchange) codes.

The text editor will also allow alphanumeric input to be manipulated by means of a
wide range of edit facilities. Programs written in this way are called source code
and may be saved to disk as text files.

Merlin is a complete, Windows based, text editor for writing and editing any
standard ASCII text file, including 6502 source code.

Merlin allows you to edit text using the PC keyboard, mouse or a combination of
the keyboard and mouse.

 5.2 Getting Started

Select Programs from the Start menu, then from the LJ Merlin Development
System submenu click on the Merlin option. You should now have access to the
Merlin text editing screen. If it is not already selected, click on the Editor tab.

If you are running the LJ ClassAct Launcher software, you can also run the Merlin
text editor using the Merlin application launch code.

The editor screen includes the standard windows menu titles and text editing
command buttons, as shown opposite.

An Introduction to 6502 The Merlin Text Editor
Microprocessor Applications Chapter 5

LJ Technical Systems 67

Place the mouse cursor over each of the toolbar buttons. A caption box will
appear, this tells you the function of the button.

 New – Creates an untitled blank text file. To save the file and give it a
name, the Save function must be used.

 Open – Opens an existing text file.

 Save – Saves the open file. If the file has not previously been saved (that is,
it has no name), then the Save As window will open, prompting you to name
the file.

 Cut – Removes selected text and places it on the clipboard ready for pasting.
The selected text will remain on the clipboard until other text is copied or
cut.

 Copy – Copies the selected text and places it on the clipboard. The selection
will remain available for pasting until other text is copied or cut.

 Paste – Places the copied or cut text wherever the flashing cursor has been
placed.

 Print – Prints the currently open text file.

 Find – Locates each occurrence of a given word.

 Options – Opens the Options window. This allows you to change the
current settings.

The Merlin Text Editor An Introduction to 6502
Chapter 5 Microprocessor Applications

68 LJ Technical Systems

These tools are also available from the menu bar at the top of the Merlin screen.
The File menu contains the New, Open, Print, Save and Options commands,
while the Cut, Copy, Paste and Find commands can be found in the Edit menu.

 5.3 Use of the Merlin Editor

It is worthwhile spending a little time learning some of the basic features of the
Merlin Editor, before going on to use it to create source files for the 6502 Cross
Assembler.

From the Help menu select Merlin On Screen Help, the help screen will open.
The screen is split into two sections. Copy the text in the right hand section by
placing the mouse cursor to the left of the ‘G’ in ‘General’, hold the left mouse
button down and drag the cursor downward until all the text is highlighted (see
picture below). With the text selected, hold down the CTRL key on the keyboard
and press the ‘C’ key (this is the keyboard shortcut CTRL + C). The selected text
will be copied to the clipboard (Note there is not a Copy button available in the
Help screen).

The selected text is now available for pasting. Close the help screen by clicking on
the button in the top right corner of the window. This will bring you back to the
main Merlin screen.

An Introduction to 6502 The Merlin Text Editor
Microprocessor Applications Chapter 5

LJ Technical Systems 69

Left click inside the editing area once and then press the Paste button from the
toolbar. You should now see the help text displayed in the editing screen. The font
is different from the original, as Merlin does not support the help screen font style.

5.3a Which of the following sequences is correct for copying text from one
place to another?

 a Paste – Select – Save.

 b Copy – Select – Cut.

 c Select – Copy – Paste.

 d Print – Select – Copy.

Finding and Replacing Occurrences of Text

When dealing with large text files it is often beneficial to have a tool that locates
specific text occurrences. This is especially true of large assembler source code
files, as it is quite often necessary to change variable names and memory locations.

Click on the Find button on the toolbar. The Find window will open. If the Find
window is covering the text, you can click on the blue title bar and drag it to a
more convenient position. In the ‘find what’ field type ‘microprocessor’, then click
the Find Next button. If the ‘Finished Searching’ text box appears then press ‘OK’
and you will be offered the option of starting again from the beginning, Do this.
The first occurrence of the word will be found and selected (highlighted).

On the toolbar press the Cut button, the word will be deleted. Click the Find Next
button on the Find window, the next occurrence will now be highlighted. From the
toolbar press the Copy button then close the Find window by clicking cancel.

Place the flashing cursor between the words ‘of’ and ‘boards’ then press the Paste
button. The original text should be restored.

The Merlin Text Editor An Introduction to 6502
Chapter 5 Microprocessor Applications

70 LJ Technical Systems

In the Edit menu select the Replace option. In the ‘Find what’ field type
‘microprocessor’ (or use the paste facility). In the ‘Replace with’ field, type
‘mpcsr’ then click the Replace All button. All occurrences of the word
microprocessor should now have been replaced with mpcsr. Swap the contents of
the ‘Find what’ and ‘Replace with’ fields and repeat the process to restore the
original text. Close the ‘Replace’ facility by clicking on the ‘Cancel’ button.

5.3b In which menu are the Find and Replace commands located?

 a File

 b Edit

 c Tools

 d Help

Saving Text Files

As you work through the exercises contained in this manual, you will create
assembly language programs and save them to disk as source code files. You may
save your files to floppy disk or to an area of a networked drive that has been made
available by your instructor. For further guidance on saving your files, please
consult your instructor.

Click on the File menu and select the Save As option. The ‘Save As’ window will
open. Navigate to the drive and folder where your files will be saved. Press the
Create New Folder button . A new folder will appear. Type ‘6502’ and press

the Enter key to rename the folder. This will be the folder in which you save your
source code files. It will be used only for 6502 programs as the source code for
other microprocessors will be different.

The files you will create in subsequent chapters of this manual will be assembly
language source code files. Although a source code file is essentially a text file, it
must be saved as an ‘.ASM’ file as this allows the assembler to generate the object
program.

An Introduction to 6502 The Merlin Text Editor
Microprocessor Applications Chapter 5

LJ Technical Systems 71

Double click on the folder you have created and type ‘Merlin’ in the ‘file name
field’. Check that the ‘Save as type’ option displays the ‘.TXT’ extension. Press the
save button. The window will close and the file will be saved in the 6502 folder.

5.3c The file extension used for Assembly language source code is:

 a .TXT

 b .DOC

 c .ASM

 d .ASL

Printing Open Files
You can print the currently displayed file either by clicking the Print button on the
toolbar or by choosing the Print option from the File menu.

5.4 Merlin Options

Ensure the serial communications cable (RS232) is fitted correctly between the
MAC III board and the serial port of the PC. Make a note of the COM port number
on the PC to which the cable is connected. From the File menu select Options.
The Options window will open. Check the correct COM port is selected and
change if necessary.

Under the Compiler Options ensure the 6502 Cross Assembler is selected from
the ‘Assembler’ drop down menu.

A facility to change the font preferences is also available in the Options window.
Click on the Font button, browse the different styles of fonts available then click
Cancel to exit. On your return to the Options window, click on Save to save the
current options.

The Merlin Text Editor An Introduction to 6502
Chapter 5 Microprocessor Applications

72 LJ Technical Systems

5.4a Which of the following fonts is not available from the Fonts window?

 a Courier.

 b Terminal.

 c Garamond.

 d LJ Terminal Display.

5.5 Checking Communication

In subsequent chapters of this manual you will be downloading programs from the
PC to the MAC III board. In order to do this, there must be a working RS232 serial
connection. To check that you have a working serial connection:

Click on the Terminal tab in the Merlin screen. In the top right corner there is an
LED icon. With the MAC III board switched off this will appear red. Switch on
the power supply to the MAC III board. The LED icon should now change to
green and the screen will appear as below.

You now have a working serial connection. Click on the Editor tab to return to the
Merlin text editor.

Green LED Icon

An Introduction to 6502 The Merlin Text Editor
Microprocessor Applications Chapter 5

LJ Technical Systems 73

Note: If there is no communication between the PC and the MAC III board, check
that:

• the serial communication cable is connected correctly.
• the correct COM port is selected as described in Section 5.4.
• there is power supplied to the MAC III board (The power LED on

the MAC III board should illuminate).

Then try to re-establish communication between the PC and the MAC III board.

5.6 Using the Merlin On Screen Help

The Merlin On Screen Help contains quick and easy access to help pages that
cover all modes of Merlin operation.

From the Help menu select Merlin On Screen Help. The help screen will open as
shown below. The screen is split into two separate windows.

In the left window you will see the Navigation area. This allows you to select the
help page required from the help folders. This window can be hidden using the
Hide button and re-displayed using the Show button.

The Merlin Text Editor An Introduction to 6502
Chapter 5 Microprocessor Applications

74 LJ Technical Systems

The pages are split into three sections as follows:

i. Using Merlin – covers the general functions of the different modes of
Merlin.

ii. Reference – includes more specific details on subjects like error
handling and transferring files.

iii. Assembly language tutorials - contains a sample program and notes
for each Assembler you have installed.

The window on the right displays the help text that is selected. Each topic will
contain links to other relevant topics. These appear as standard Windows
navigation links (Colored blue and underlined).

In the left window expand the ‘Using Merlin’ folder by clicking on the symbol.
Click on the ‘Using the source code editor’ page. Read through this page using the
scroll-bar on the right as required. Note how the link at the bottom of the page
refers to the next page within the ‘Using Merlin’ folder.

5.6a The link displayed at the bottom of the ‘Using the source code editor’
page is:

 a Assembling a program

 b Compiling a program

 c Error Handling

 d Opening and Saving Files

Close the Help window by clicking on the button in the top right corner.

5.7 Exiting Merlin

You can exit from the Merlin Text Editor at any time, either by selecting the Exit
command from the File menu or by clicking on the button in the top right
corner of the window.

Try this now. You will be asked to save any unsaved work before you exit Merlin.

An Introduction to 6502 The Merlin Text Editor
Microprocessor Applications Chapter 5

LJ Technical Systems 75

 Student Assessment 5

1. The three options that are contained in the Tools menu are:
 a Compiler, Terminal and Editor.

 b Editor, Assembler and Terminal.

 c Terminal, Assembler and Compiler.

 d Print, Compiler and Terminal.

2. This button will:
 a Cut the currently selected text.

 b Copy the currently selected text.

 c Paste the text that is currently on the clipboard.

 d Save the current file.

3. The Merlin toolbar button that creates a new blank text file is:
 a

 b

 c

 d

4. The Merlin command used to place a duplicate of the selected text onto the clipboard is:
 a Paste.

 b Copy.

 c Cut.

 d Print.

Continued …

The Merlin Text Editor An Introduction to 6502
Chapter 5 Microprocessor Applications

76 LJ Technical Systems

 Student Assessment 5 Continued ...

5. The Options command can be found in which menu?
 a File.

 b Edit.

 c Tools.

 d Help.

6. The Merlin command that will locate each occurrence of a given word is:
 a Select All.

 b Edit.

 c Find.

 d Copy.

7. The links on the help pages are colored:
 a red.

 b green.

 c yellow.

 d blue.

8. The Merlin On Screen Help pages are split into how many sections?
 a 1

 b 2

 c 3

 d 4

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

Chapter 6 Introduction to Development Systems

LJ Technical Systems 77

Objectives of
this Chapter

Having studied this chapter you will be able to:

� Use the Merlin Text Editor to enter 6502 assembly
 language programs.

� Recognize the operation of the 6502 Cross Assembler.

� Use Terminal commands to execute and debug an
 object program.

� Use Terminal Commands to examine and modify the
 contents of MAC III memory.

Equipment
Required for
this Chapter

y MAC III 6502 Microcomputer.
y Power supply.
y Keypad/display unit.
y 6502 Cross Assembler Reference Manual.
y Merlin Development System Software Pack, installed on a PC
 running Windows 95 or later.
y MAC III 6502 User Manual.

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

78 LJ Technical Systems

 Introduction

An Assembler will examine the text of a source program and convert any 6502
instructions which it recognizes into 6502 machine code.

It will also alert you to any text it does not recognize and any instructions, which
have incorrect form. Any text which follows a semi-colon (;) will be ignored by
the assembler. This allows you to put comments in your programs.

 6.1 Using the Text Editor to Create 6502 Source Programs

Many 6502 instructions require one or more operands to be specified. The
operands specify the data, which is to be operated upon. These are listed after the
instruction mnemonic. There are a number of possible operands (immediate data,
absolute addresses, registers, etc.). For example:

 LDA $0580

Here the operand is the absolute memory location 0580H. . The '$' prefix indicates a
hexadecimal number. Other types of numbers can be specified by the prefixes
shown below:

Prefix Number Type

%

@

None

$

Binary

Octal

Decimal

Hexadecimal

Another operand type is immediate data. This is a known value. Immediate data is
specified by the '#' sign. This allows the assembler to distinguish between
Immediate and other addressing modes. Immediate data can be expressed in binary,
octal, decimal or hexadecimal.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 79

For example:

 LDA #%01010011 ;Loads the accumulator with the binary
 ;value 01010011

 LDA #@25 ;Loads the accumulator with the octal
 ;value 25

 LDA #43 ;Loads the accumulator with the decimal
 ;value 43

 LDA #$6E ;Loads the accumulator with the hexadecimal
 ;value 6E

The last major type of operand is a label. JUMP instructions require an operand to
indicate the destination for the jump. In assembly language, you can specify
locations, which may be jumped to by putting a label to them. You can then use the
label as an operand for a jump instruction.

The last part of an assembly language line is a comment. Comments are totally
ignored by the assembler, but are a very important aid to the programmer or
another who wishes to understand the program. Assembly language programs tend
to be quite difficult to follow if comments are omitted. Comments will help you to
remember the function of a given section of code. Since the assembler ignores the
comments, they do not cause the object program to become longer or reduce the
speed of execution.

You will now use Merlin to generate a source program and save it in a file called
PROG1.ASM.

Note: The '.ASM' extension at the end of the filename is important, as it tells
 the Cross Assembler that this is an assembly language source file. If
 the filename does not have a '.ASM' extension, the Cross Assembler will
not be able to generate any object code.

Run the Merlin Cross Assembler as in Chapter 5, Section 5.2. You should now see
the Merlin screen and the blank text editing area.

Note: In order to carry out the work in this chapter and all subsequent

chapters there will need to be a working serial connection between the
MAC III board and the PC. Refer to Section 5.5 “Checking
Communication” in Chapter 5 for further information.

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

80 LJ Technical Systems

Enter the simple program below. Notice how the semi-colons are used to define the
beginning of a comment:

 CLD ;Select binary arithmetic mode
 LDA #$01 ;Loads accumulator with 01H
 CLC
 ADC #$02 ;Adds 02H to the accumulator
 STA $0500 ;Saves result in 0500H
 RTS ;Returns to MAC III system

Now, the assembler will also need the required start address for the object code. A
special instruction to the assembler (an assembler directive) is used for this
purpose. The ‘ORG’ directive is used to tell the assembler where in memory to
insert the object code.

Insert ORG $0400 at the beginning of your program thus:

 ORG $0400 ;Object code start address
 CLD ;Select binary arithmetic mode
 LDA #$01 ;Loads accumulator with 01H
 CLC
 ADC #$02 ;Adds 02H to the accumulator
 STA $0500 ;Saves result in 0500H
 RTS ;Returns to MAC III system

It is also good practice to give the program a title and a short description. These
can be inserted as comments at the top of the screen thus:

;Program 1

;This program will add together 01H and 02H and save the
;result in location 0500H.

 ORG $0400 ;Object code start address
 CLD ;Select binary arithmetic mode
 LDA #$01 ;Loads accumulator with 01H
 CLC
 ADC #$02 ;Adds 02H to the accumulator
 STA $0500 ;Saves result in 0500H
 RTS ;Returns to MAC III system

Remember that each comment line must start with a semi-colon (;).

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 81

When you have completed this source program you can save your file by selecting
the Save As command in the File menu. Save the file as “PROG1.ASM” in the
6502 folder previously created.

 6.1a The character used to indicate binary data to the Cross Assembler is:

 a %

 b @

 c $

 d B

 6.1b In a source program, the start address is specified using:

 a a filename.

 b an ORG directive.

 c a LIST directive.

 d a sub-directory.

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

82 LJ Technical Systems

6.2 Assembling an Object Program

It is now necessary to assemble the object code from your source program. There
are two ways in which you can assemble your source code, either by selecting
Assembler from the Tools menu or more simply by clicking on the Assembler tab.
Click on the Assembler tab on the main screen. This assembles the source code
and generates the object code. If the assembler finds no errors in your program, the
message at the bottom of the assembler screen will show:

 End of assembly: 0 errors found

When you see this message, an Object Code program has been assembled and
saved in the 6502 folder. In the case of the PROG1.ASM file, an Object Code file
was produced called PROG1.OBJ. The object code file can then be downloaded to
the MAC III board, where its contents are stored in memory as machine code.

 6.2a Assembly is the conversion of a source code program into:

 a a development code program.

 b a directive code program.

 c an object code program.

 d an operand code program.

If you do not see the message shown above, then your source program contains at
least one error. In this case no Object Code will be saved; the line containing the
error will be highlighted in red on the editor screen. Place the cursor on the line and
a message indicating the nature of the error will appear at the bottom of the screen.
You should make the necessary change to your source code and attempt to re-
assemble.

The Assembler screen displays the source code program listing. This is quite a
useful reference as this shows both the machine code and the corresponding
program mnemonics. The physical address of each instruction is also shown.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 83

The assembler screen will show the listing file as displayed below:

Line# Address Object Source AS65 6502 Cross Assembler V3.0

1 0400 ;Program 1
2 0400
3 0400 ;This program will add together 01H
 ;and 02H and save the result in
4 0400 ;location 0500H
5 0400
6 0400 ORG $0400 ;Object code start address
7 0400 D8 CLD ;Select binary arithmetic mode
8 0401 A9 01 LDA #$01 ;Loads accumulator with 01H
9 0403 18 CLC
10 0404 69 02 ADC #$02 ;Adds 02H to the accumulator
11 0406 8D 00 05 STA $0500 ;Saves result in 0500H
12 0409 60 RTS ;Returns to MAC III system

End of Symbol Table

 0 labels declared
 12 sources lines read

18 bytes object code space used

End of assembly: 0 errors found

If you have a printer connected to your PC you can print this same listing by
selecting the Print command either from the File menu or the toolbar.

On the editing screen remove the semi-colon in front of the line ‘Program 1’, and
re-assemble the program. A message should appear as shown below:

 End of assembly: 1 errors found

 6.2b The error displayed when placing the cursor on the line is:

 a ERROR 2: Missing space after label ‘1’.

 b ERROR 4: Missing label after space ‘1’.

 c ERROR 1: Fault at line ‘1’.

 d ERROR 7: Missing label ‘10’.

Using the instructions described previously, remove the error and re-assemble the
program.

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

84 LJ Technical Systems

 6.3 Executing Assembled Programs

Although you can edit and assemble 6502 machine code using your PC, you cannot
run 6502 programs. This is because the microprocessor within the PC is not a 6502
and so 6502 machine code is meaningless to it. It is therefore necessary to transfer
your 6502 object code program from the PC to the MAC III.

To allow the PC to communicate with the MAC III, it is necessary to enter the
‘Terminal’ mode. Firstly, ensure that power to the MAC III is OFF, and that the PC
and MAC III are connected via the serial communications cable supplied with the
Merlin Development System.

PC

CH.A

RS232

MAC III

PC connected to MAC III via the serial communications cable

Click on the Terminal tab to enter the Terminal mode. Switch on the power to the
MAC III board. The Terminal screen will display as follows:

LJ Technical Systems MAC3 6502 V2.2

M <address> - Display memory contents from the specified address
C <address> - Change memory contents at the specified address
G <address> - Execute a program from the specified address
T <address> - Trace instruction at specified address and display registers
L - Load file from cassette or RS232 into memory
H+ - Display the full help screen

MAC:_

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 85

You are now in Terminal Mode. In this mode the PC displays on its screen any
character received through its serial port, from the target board. Also, any
commands entered at the PC keyboard are transmitted to the target board. The light
in the top right hand corner of the terminal screen indicates the state of the
Terminal, that is a green light is displayed if connected and a red light if
disconnected.

In effect, the PC is behaving as the keyboard and display of the MAC III.

Thus any key pressed on the PC keyboard is interpreted as a command by the MAC
III. The MAC III will then respond by displaying information on the PC screen.

Note: You can return to the MAC III:_ prompt at any time, simply by

pressing the RESET button on the MAC III board.

To download the object code program to the MAC III, simply click the Send File
to Board button. The PC will then download the most recently assembled
object code file via the MAC III serial port.

If the file is successfully downloaded, the MAC III command prompt on the
Terminal screen will respond ‘Loaded’.

Note: If the MAC III board does not respond correctly, refer to the Checking

Communication section of Chapter 5.

You can check that the program has been entered into MAC III memory by
pressing the M and the Enter keys in sequence. The display will then show:

0400: D8 A9 01 18 69 02 8D 00i...
0408: 05 60 FF FF FF FF FF FF .’......
0410: FF FF FF FF FF FF FF FF
0418: FF FF FF FF FF FF FF FF
0420: FF FF FF FF FF FF FF FF
0428: FF FF FF FF FF FF FF FF
0430: FF FF FF FF FF FF FF FF
0438: FF FF FF FF FF FF FF FF
0440: FF FF FF FF FF FF FF FF
0448: FF FF FF FF FF FF FF FF

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

86 LJ Technical Systems

This indicates that the contents of 0400H are D8H, the contents of 0401H are A9H
and so on. The right-hand column shows the ASCII equivalent of the contents of
each memory location. The default value for memory display is 0400H.

You can examine any area of MAC III memory by entering the start address after
the ‘M’. For example, ‘M 0500’ will display the contents of MAC III locations
0500H to 054FH.

The amount of memory shown on the screen can be altered by appending a semi-
colon and the number of bytes to the command thus: ‘M 0400;8’ will display:

0400: D8 A9 01 18 69 02 8D 00 i...

Now examine the contents of location 0500H by entering “M 0500”. The display
should show the contents of 0500H to be FFH. When the program has been run we
shall examine 0500H again to confirm correct operation.

Press G then Enter to run the program. The default address for execution is
0400H.

You can execute from any location by entering the start address after the “G”. For
example, “G 0600” will execute from location 0600H.

If you now use the “M” command to examine memory location 0500H you should
find that it has been modified to 03H by the program (01H + 02H = 03H).

So, you can now write and edit source programs, assemble these into 6502 Object
Code and transfer programs to the MAC III.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 87

 6.3a After entering "M 0480;8" the display screen shows:

0480: 3D 06 E3 78 EF D2 10 05 >.......
 This indicates that the contents of location 0486H are:

 a 05H

 b 10H

 c 3DH

 d D2H

 6.3b The Terminal Mode key sequence G 0 5 4 0 Enter will cause:

 a object code to be assembled, starting at location 0540H.

 b the contents of location 0540H to be examined but not modified.

 c program execution from location 0540H.

 d object code to be transferred to the MAC III, starting at location 0540H.

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

88 LJ Technical Systems

6.4 Use of Labels

Labels can be used within a source file in place of hexadecimal values or
addresses. The ‘value’ of the label is defined using an EQU assembler directive.
For example:

MEMORY: EQU $0500 ;Defines “MEMORY” as 0500H
FIRST: EQU $01 ;Defines “FIRST” as 01H
SECND: EQU $02 ;Defines “SECND” as 02H

 ORG $0400 ;Object code start address
 CLD ;Select binary arithmetic mode
 LDA #FIRST ;Loads accumulator with 01H
 CLC
 ADC #SECND ;Adds 02H to the accumulator
 STA MEMORY ;Saves result in 0500H
 RTS ;Return to MAC III System

The assembler will insert ‘01H’ in place of ‘FIRST’, ‘02H’ in place of ‘SECND’
and ‘0500H’ in place of ‘MEMORY’.

There are a number of rules for the use of labels:

1. Labels must begin with a letter but may include numbers. So ‘NUMB7’ is

acceptable, whereas ‘7NUMB’ is not acceptable. Lower or upper case letters
may be used.

2. Labels are limited to 8 characters.

3. A label must not be a reserved word or a 6502 mnemonic. A list of reserved
words can be found in the 6502 Cross Assembler Reference Manual.

4. When a label is defined, it must appear in the left hand column of the assembly
language and must be followed immediately by a colon (:). See the example
above.

Return to the editing area by clicking on the Editor tab. Select the New command
from the File menu or from the header bar icon. Enter the program shown on the
next page. Do not try to enter the arrows. These are just to help you to
understand how the program works.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 89

VAL1: EQU $02 ;Defines 'VAL1' as 02H
VAL2: EQU $03 ;Defines 'VAL2' as 03H
MEM1: EQU $0500 ;Defines 'MEM1' as 0500H

 ORG $0400 ;Object code start address

BEGIN: CLD ;Select binary arithmetic mode
 LDA #VAL1 ;Loads accumulator with 02H
 CLC
 JMP NEXT ;Jumps to instruction at label 'NEXT:'
LAST: STA MEM1 ;Saves accumulator in 0500H
 RTS ;Returns to MAC III system
NEXT: ADC #VAL2 ;Adds 03H to accumulator
 JMP LAST ;Jumps to instruction at label 'LAST:'

JMP is a JUMP instruction. It will transfer program execution to a point other than
the next location in sequence.

Your source program should be:

; Program 2

; This program adds 02H and 03H, saving the result in
; location 0500H, using labels.

VAL1: EQU $02 ;Defines 'VAL1' as 02H
VAL2: EQU $03 ;Defines 'VAL2' as 03H
MEM1: EQU $0500 ;Defines 'MEM1' as 0500H

 ORG $0400 ;Object code start address

BEGIN: CLD ;Select binary arithmetic mode
 LDA #VAL1 ;Loads accumulator with 02H
 CLC
 JMP NEXT ;Jumps to instruction at label 'NEXT:'
LAST: STA MEM1 ;Saves accumulator in 0500H
 RTS ;Returns to MAC III system
NEXT: ADC #VAL2 ;Adds 03H to accumulator
 JMP LAST ;Jumps to instruction at label 'LAST:'

Save the program as “PROG2.ASM”.

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

90 LJ Technical Systems

Assemble this program and produce a listing thus:

Line# Address Object Source AS65 6502 Cross Assembler V3.0

1 0400 ;Program 2
2 0400
3 0400 ;This program will add together 02H and 03H and
4 0400 ;save the result in location 0500H using labels
5 0400
6 0400 VAL1: EQU $02
7 0400 VAL2: EQU $03
8 0400 MEM1: EQU $0500
9 0400
10 0400 ORG $0400 ;Object code start address
11 0400
12 0400 D8 BEGIN: CLD ;Select binary arithmetic mode
13 0401 A9 02 LDA #VAL1 ;Loads accumulator with 02H
14 0403 18 CLC
15 0404 4C 0B 04 JMP NEXT ;Jumps to instr. at label 'NEXT:'
16 0407 8D 00 05 LAST: STA MEM1 ;Saves result in 0500H
17 040A 60 RTS ;Returns to MAC III system
18 040B 69 03 NEXT: ADC #VAL2 ;Adds 03H to accumulator
19 040D 4C 07 04 JMP LAST ;Jumps to instr. at label 'LAST:'
20 0410

Symbol Table

Symbol Value Cross-reference (# is definition)

BEGIN 0400 12#
LAST. 0407 16# 19
MEM1. 0500 8# 16
NEXT. 040B 15 18#
VAL1. 0001 6# 13
VAL2. 0002 7# 18

End of Symbol Table

 6 labels declared
 20 sources lines read

24 bytes object code space used

End of assembly: 0 errors found

Notice that the assembler inserts hexadecimal values in place of labels. In the case
of JUMP instructions the addresses are given low byte first. The listing file will
also list the label definitions. This can be very useful, as a crosscheck.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 91

Enter the terminal mode to download your program to the MAC III board. Run the
program (G Enter) and examine the memory contents (M0500;1) to ensure that the
program has been successful.

So, you have now seen two ways of defining an address label:

1. Using an EQU assembler directive (for example, MEM1 above).

2. Inserting the label just before an instruction (for example, LAST above).

There are other ways of defining labels. The program shown below loads locations
1100H to 1102H with the value 88H. This can be used to demonstrate a third means
of defining a label:

;Program 3

;This program uses labels which are modified to point to various
;locations

 ORG $0500 ;Object code start address

VAL1: EQU $88 ;Defines “VAL1” as 88H
MEM1: EQU $1100 ;Defines “MEM1” as 1100H

 LDA #VAL1 ;Loads accumulator with 88H
 STA MEM1 ;Saves accumulator in 1100H
 STA MEM1+1 ;Saves accumulator in 1101H
 STA MEM1+2 ;Saves accumulator in 1102H
 RTS ;Returns to MAC III system

The value 1100H is assigned to “MEM1”. It is however possible to change this
within the program as shown above. So MEM1+1 is 1101H and MEM1+2 is
1102H.

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

92 LJ Technical Systems

Use Merlin to create the new source program on the previous page and save this
program as “PROG3.ASM”. Assemble this program and produce a listing thus:

Line# Address Object Source AS65 6502 Cross Assembler V3.0

 1 0400 ;Program 3
 2 0400
 3 0400 ;This program uses labels which are modified to
 4 0400 ;point to various locations
 5 0400
 6 0400
 7 0400 ORG $0500 ;Object code start address
 8 0500
 9 0500 VAL1: EQU $88 ;Defines 'VAL1' as 88H
 10 0500 MEM1: EQU $1100 ;Defines 'MEM1' as 1100H
 11 0500
 12 0500 A9 88 LDA #VAL1 ;Loads accumulator with 88H
 13 0502 8D 00 11 STA MEM1 ;Saves accumulator in 1100H
 14 0505 8D 01 11 STA MEM1+1 ;Saves accumulator in 1101H
 15 0508 8D 02 11 STA MEM1+2 ;Saves accumulator in 1102H
 16 050B 60 RTS ;Returns to MAC III system
 17 050C

Symbol Table

Symbol Value Cross-reference (# is definition)

MEM1. 1100 10# 13 14 15
VAL1. 0088 9# 12

End of Symbol Table

 2 labels declared
 17 sources lines read

20 bytes object code space used

End of assembly: 0 errors found

Notice that the object code address references are modified according to the label
modifier.

Download the program to the Mac III board and run from location 0500H
(G0500 Enter). Examine memory locations (M1100;3) to ensure correct
operation.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 93

 6.4a If the label 'VAL1' is assigned the value 2DH, the 6502 Cross Assembler
will interpret 'VAL1+2' as:

 a 02H

 b 03H

 c 2DH

 d 2FH

 6.4b The maximum number of characters for a label recognized by the 6502
Cross Assembler, is:

 a 6

 b 8

 c 12

 d 26

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

94 LJ Technical Systems

 6.5 Debugging Using the Terminal Software

An earlier chapter dealt with the debugging facilities available from the
keypad/display unit - Break Point and Single Step. These and enhanced debugging
facilities may also be used from Terminal.

 Break Points

The break point facility allows a program to be halted at any desired point. The
6502 registers are then displayed on the screen, and memory locations may be
examined. This allows partial program results to be inspected. A break point is
easily set by entering ‘B’ followed by the required address. For example, to set a
break point at location 0404H, enter ‘B 0404’ at the ‘MAC III:’ prompt.

From Merlin file menu, open file PROG1.ASM and assemble the source code,
using the commands described previously. Then select Terminal mode and
download the object code file to the MAC III. Next, set a break point at 0406H by
entering 'B 0406'.

Run the program from the beginning by entering ‘G 0400’ and the display will
show ‘*** At breakpoint ***’. The contents of the 6502 registers and the
next instruction to be executed are also shown. To continue execution from a break
point, simply press G followed by Enter .

A break point can be removed by entering ‘K’ followed by the required address.
So, to clear the break point we have just set, enter ‘K 0404’. As with the MAC III
monitor break point facility, up to 8 break points can be set. The command ‘K*’
will clear all break points.

 Single Step

The Single Step or ‘Trace’ facility allows a program to be stepped through,
instruction by instruction. At each step the contents of 6502 registers are displayed
on the screen, and memory locations may be examined. To trace a program which
starts at location 0400H, enter ‘T 0400’ at the ‘MAC III:’ prompt. Use the ‘M’
command to check that PROG1 is still in MAC III memory. If this is not the case
you will have to download the PROG1 object code program to the MAC III once
again.

Now, single step from 0400H by typing ‘T 0400’ followed by Enter . The first
instruction will be executed and the screen will display the contents of each
register, and the next instruction to be executed. Press the Enter key and the next
instruction is executed and the registers displayed. You can continue stepping
through the program by pressing the Enter key.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 95

Memory Edit

The 'M' command allows the contents of memory locations to be inspected. The
contents of memory locations can be modified by using the 'C' command when in
Terminal mode. This can work in a number of ways. Firstly, the contents of a
single memory location can be changed by entering 'C' followed by the required
address. Enter 'C 0600' and the screen will show:

 0600: FF

This shows the contents of 0600H to be FFH. you can modify these by entering the
desired value, say 12H and pressing the Enter key.

The screen will now show:

 0600: FF 12
 0601: FF

The contents of 0600H are now 12H and the contents of 0601H can now be
modified. If it is not necessary to modify 0601H, press the Esc key and the
'MAC:' prompt will return. Alternatively, a colon after the new value will return to
the 'MAC:' prompt thus:

 0600: FF 12:
 MAC:_

A second way of using the 'C' command is to modify a number of consecutive
locations. Enter 'C 0600' and the display will show:

 C 0600
 0600: 12 _
It is now possible to enter consecutive values with spaces between each thus:

C 0600
0600: 12 21 45 D4 22 E7:

Use the 'M' command to display thus 'M 0600;5' and the screen will show:

0600: 21 45 D4 22 E7

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

96 LJ Technical Systems

A third way of using the 'C' command is to enter ASCII codes directly. For
example, to enter the ASCII codes for the message 'Hello' from location 0600H:
Enter 'C 0600' and type the ASCII characters in between quotation marks thus:

0600: 21 "Hello":

Use the 'M' command to display thus 'M 0600;5' and the screen will show:

0600: 48 65 6C 6C 6F Hello

 Display/Modify Registers

The ‘R’ command allows 6502 registers to be examined and modified. If you now
enter ‘R’, the display will show the contents of all 6502 registers. The contents of a
register can be changed by specifying the register and then the required value. For
example:

MAC: R X 12

X register changes to 12H

X register to be modified
Modify register

 Disassemble

Recall that assembling is the process of producing an object code program from a
source program in 6502 Assembly Language mnemonics. Disassembly is the
reverse process. In disassembly a 6502 Assembly Language mnemonic listing is
produced from an object code program. The disassembler cannot, of course,
reproduce comments but a source listing is far easier to understand than machine
code!

So, a disassembler takes an object code program and presents it in assembly
language form. This can be a very useful tool if source program files have been lost
or are otherwise unavailable. The disassembler command is ‘D’. To disassemble a
program in MAC III memory, enter ‘D’, followed by the start address.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 97

For example, we can disassemble the start of the MAC III Monitor program in the
Monitor EPROM.

To do this, type 'D F022' and press the Enter key.

The display will be similar to that shown below:

 F022: 78 SEI
 F023: D8 CLD
 F024: A9 00 LDA #00
 F026: 8D 66 02 STA 0266
 F029: A2 80 LDX #80
 F02B: 9A TXS
 F02C: AD 0D 80 LDA 800D
 F02F: 29 10 AND #10
 F031: F0 21 BEQ F043
 F033: AD 67 02 LDA 0267

You should recognize some of the 6502 instruction mnemonics shown. By the end
of this manual you will have used all of the instruction types above.

The length of the code to be disassembled can be specified thus:

 D F022;20
 The 20H instructions from
 F022H will be disassembled

 Keypad Restart

This facility allows control to be returned to the MAC III keypad. Simply type 'P'
and press the Enter key.

To return control to Terminal Mode, press the RESET button on the MAC III
board.

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

98 LJ Technical Systems

 6.5a The correct Terminal Mode key sequence to examine the contents
from location 0480H is:

a 0 4 8 0 M Enter

b 8 0 0 4 M Enter

c M 0 4 8 0 Enter

d M 8 0 0 4 Enter

 6.5b The Terminal Mode key sequence C 0 6 A 0 Enter will
allow:

a object code to be assembled, starting at location 06A0H.

b the contents of location 06A0H to be examined but not modified.

c the contents of location 06A0H to be examined and modified if
 required.

d object code to be transferred to the MAC III, starting at
 location 06A0H.

An Introduction to 6502 Introduction to Development Systems
Microprocessor Applications Chapter 6

LJ Technical Systems 99

 Student Assessment 6

1. The ORG assembler directive is used to:
 a return to the MAC III system.

 b assemble an object code program.

 c define the start address for an object code program.

 d generate error messages.

2. Which of the following lines is a comment and will be ignored by the assembler?

 a # Program 1

 b “Program 1”

 c ; Program 1

 d (Program 1)

3. The instruction “LDA #$01” executes which operation?

 a Adds 01H to the value stored in the accumulator.

 b Stores the value held in the accumulator at address 01H.

 c Loads 01H into the accumulator.

 d Resets the accumulator to zero.

4. The Terminal Mode key sequence M 0 5 0 0 Enter will allow:

 a the contents of location 0500H to be examined.

 b the contents of location 0500H to be examined and modified.

 c the execution of the object program which starts at location 0500H.

 d the saving to disk of the object program which starts at location 0500H.

Continued ...

Introduction to Development Systems An Introduction to 6502
Chapter 6 Microprocessor Applications

100 LJ Technical Systems

 Student Assessment 6 Continued ...

5. Assembling a file called “PROG6.ASM” will also create a file named:
 a PROG6.OBJ

 b PROG6.TXT

 c PROG6.ORG

 d PROG6.TML

6. The Terminal Mode key sequence G 0 2 0 0 Enter will allow:

 a the contents of location 0200H to be examined but not modified.

 b the contents of location 0200H to be examined and modified if required.

 c the execution of the object program which starts at location 0200H.

 d the saving to disk of the object program which starts at location 0200H.

7. The contents of memory location 0380H can be examined and modified using the
 Terminal Mode key sequence (followed by Enter):

 a A 0 3 8 0

 b C 0 3 8 0

 c G 0 3 8 0

 d M 0 3 8 0

8. The execution of a program starting at address 0600H can be traced using the key
 sequence (followed by Enter):

 a L 0 6 0 0

 b G 0 6 0 0

 c C 0 6 0 0

 d T 0 6 0 0

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

Chapter 7 Addressing Modes

LJ Technical Systems 101

Objectives of
this Chapter

 Having studied this chapter you will be able to:

 Describe the operation of the 6502 Addressing
 Modes:

 Implied
 Immediate
 Absolute
 Zero Page

 Write assembly language programs which use Implied,
 Immediate, Absolute and Zero Page addressing.

 Explain the use of Binary Coded Decimal (BCD)
 numbers to represent decimal values.

 Write programs that perform decimal arithmetic.

 Describe the operation of the 6502 Subtract instruction
 (SBC).

 Write assembly language programs which use the 6502
 Subtract instruction.

Equipment
Required for
this Chapter

 MAC III 6502 Microcomputer.
 Power supply.
 Keypad/display unit.
 Merlin Development System Software Pack, installed on a PC

running Windows 95 or later.
 MAC III 6502 User Manual.

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

102 LJ Technical Systems

Introduction

Addressing is concerned with the way in which operands are specified. So far we
have seen the Implied, Immediate and Absolute addressing modes. This chapter
will also introduce the Zero Page addressing mode. The 6502 actually has 13
different modes of addressing.

 7.1 Implied Addressing

Recall that in Chapter 3 you learned that some instructions do not require an
operand. However, this is not strictly true. There are instructions which
apparently require no operand because the operand is implicit within the
operator. For example, CLC and RTS. Implied addressing instructions are all
single-byte instructions.

 7.2 Immediate Addressing

In immediate addressing, the operand is itself contained in the byte of memory
which immediately follows the opcode. This type of addressing can be used to
load the accumulator with any 8-bit value. For example, consider the short section
of program below:

 0500 A9 LDA #$12 ; Loads accumulator with 12H

 0501 12

 0502 69 ADC #$34 ; Adds 34H to accumulator

 0503 34

 0504 60 RTS ; Returns to ready

The instructions at locations 0500H and 0502H are examples of Immediate
addressing. The actual operand is specified in each case by the following byte of
memory.

Immediate addressing instructions will be made up of two bytes. The first byte is
the opcode byte and the second the immediate data byte.

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

LJ Technical Systems 103

 7.3 Absolute Addressing

In this mode of addressing, the absolute address of the operand is contained in
the two bytes of memory immediately following the opcode, low byte first. This
type of addressing can be used to load the accumulator with the contents of any
location in memory or to save the contents of the accumulator in any memory
location.

For example, consider the short section of program below:

 0500 AD LDA $1800 ; Loads accumulator from 1800H

 0501 00

 0502 18

 0503 8D STA $1880 ; Saves the accumulator in

 0504 80 ; location 1880H

 0505 18

 0506 60 RTS ; Returns to MAC III monitor

The instructions at locations 0500H and 0503H are examples of Absolute
addressing. The address of the operand is specified in each case by the following
two bytes of memory.

The address of the data to be acted upon may be anywhere within the full address
range of 0000H to FFFFH.

Absolute addressing instructions will be made up of three bytes. The first byte is
again the opcode byte. The second and third bytes specify the address of the
operand.

 7.3a The Accumulator initially contains the value 2CH and location
0580H initially contains 4DH. Enter the value which would be found
in the Accumulator after the instruction "LDA $0580" has been
executed.

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

104 LJ Technical Systems

 7.4 Zero Page Addressing

A microcomputer memory system can be thought of in terms of pages, rather like
the pages of a book. Each page has 25610 locations thus:

 Page Start Address Final Address

 00 0000 00FF
 01 0100 01FF
 02 0200 02FF
 03 0300 03FF
 | | |
 | | |
 FE FE00 FEFF
 FF FF00 FFFF

Page 00

Page 01 Page 02
Page FE Page FF

Diagram of Memory Pages

This mode is very similar to Absolute addressing except that operands may only
occupy the address range 0000H to 00FFH - Page Zero of memory.

In this mode of addressing, the Page Zero address of the operand is contained in
the byte of memory immediately following the opcode.

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

LJ Technical Systems 105

For example, consider the short program below:

 0500 A9 LDA #$65 ; Loads accumulator with 12H

 0501 65 ; the value 65H

 0502 85 STA $80 ; Saves the accumulator in

 0503 80 ; location 0080H

 0504 60 RTS ; Returns to MAC III monitor

The instruction at location 0502H is an example of Zero Page addressing. The
address of the operand is specified by its page zero address. Notice that in 6502
assembly language the "00" for page zero is ignored. Thus, location 0080H is
expressed as "$80".

Zero Page addressing instructions will be made up of two bytes. The first being
the opcode byte and the second specifying the Page Zero address of the operand.
Recall that immediate addressing instructions also comprise two bytes. Care must
be taken not to confuse these two modes. Notice that the assembly language for
these two modes is rather different:

 LDA #$73 ;Loads the accumulator with the
 ;immediate value 73H

 LDA $73 ;Loads the accumulator from memory
 ;location 0073H

This type of addressing has two advantages over Absolute addressing:

1. Fewer bytes are required.

2. Since fewer bytes are required, this mode is faster in operation.

Zero Page addressing has the disadvantage that it is restricted to the first 25610

locations in memory.

 7.4a The 6502 Assembly Language program section:

 LDA #$42
STA $70

a will add the values 42H and 70H

 b will add the values 42H and 70H saving the result in location 0070H

 c will place the value 42H in memory location 0070H

 d will place the value 42H in memory location 7000H

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

106 LJ Technical Systems

 7.5 Worked Example

Write a program using zero page and other addressing modes which will add 12H
to the contents of memory location 0500H and save the result in location 00F0H.
The start address should be 0400H.

Load the Accumulator
with the value 12H

Add the contents of
location 0500H to the

accumulator

Save the accumulator
contents in location

00F0H

Select Binary
Arithmetic mode

START

END

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

LJ Technical Systems 107

The Assembly Language Program will be:

 ORG $0400 ;Defines start address
0400 D8 CLD ;Selects binary arithmetic mode
0401 A9 LDA #$12 ;Loads accumulator with the value 12H
0402 12

0403 18 CLC ;Clears the carry flag

0404 6D ADC $0500 ;Adds the contents of memory
0405 00 ;location 0500H to the accumulator
0406 05

0407 85 STA $F0 ;Saves the contents of the accumulator in
0408 F0 ;location 00F0H

0409 60 RTS ;Returns to MAC III monitor

Note that the "ORG" statement is an Assembler Directive to define the memory
address at which the assembled program is to start. In the absence of an "ORG"
directive the default address 0400H will be assumed by the Cross Assembler.

Examine the contents of locations 0500H and 00F0H before execution. Check
these locations again after the program has been executed and verify that the
contents of location 00F0H are 12H greater than location 0500H.

 7.5a In the program for Worked Example 7.5, the addressing mode used
by the instruction "ADC $0500" is:

 a absolute

 b immediate

 c implied

 d zero page

 7.5b Place the value 3AH in location 0500H. Run the program for Worked
Example 7.5 and then examine the contents of memory

location 00F0H. Enter the hexadecimal value which you find.

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

108 LJ Technical Systems

 7.6 Decimal Arithmetic

So far we have only considered programs which perform binary arithmetic. Such
programs add or subtract binary (or hexadecimal) numbers, to give a binary (or
hexadecimal) result. However, many problems involve the addition or subtraction
of decimal numbers, and require a decimal result. This requires a considerable
lengthening of programs for most microprocessors.

The 6502 is unlike many microprocessors in that it can perform decimal
arithmetic directly, without the need for extra instructions.

A special flag within the Status Register is used to indicate to the Arithmetic and
Logic Unit (ALU) the type of arithmetic that is required. This is the Decimal Flag
(bit 3 of the status register).

When the Decimal Flag (D-Flag) is set (i.e. D=1), the ALU will perform decimal
arithmetic. Conversely, when the D-Flag is clear the ALU performs binary (or
hexadecimal) arithmetic.

There are two instructions which can be used to set/clear the D-Flag:

CLD This instruction will clear the D-Flag, so the ALU will perform
binary arithmetic. (You will recall that the 'CLD' instruction has been
used previously in this manual, in programs which perform binary
arithmetic.)

SED This instruction will set the D-Flag, so the ALU will perform decimal
arithmetic.

When operating in decimal mode, each 8-bit number is treated as two 4-bit codes,
each code representing a decimal value between 0 and 9. A binary code of 00002
represents decimal value 010, a code of 00012 represents 110, and so on through
to 10012 which represents 910.

Each byte therefore represents a two-digit decimal number, for example:

 0101 01002 represents 5410
 1001 10012 represents 9910

This way of representing decimal numbers is known as Binary Coded Decimal
or BCD.

When working with BCD numbers, note that the 4-bit binary codes 10102 through
11112 are invalid.

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

LJ Technical Systems 109

 7.6a Enter the decimal value represented by the BCD number 011100102.

 7.6b The BCD number which represents 4210 is:

a 001010102

 b 010000102

 c 001001002

 d 101000102

 7.6c The flag which is set to perform decimal arithmetic is the:

a D-flag

 b C-flag

 c I-flag

 d V-flag

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

110 LJ Technical Systems

 7.7 Worked Example

Write a program which will perform the calculation below and place the result in
location 00E0H:

 1210 + 2310 + 5710

END

Load accumulator with
the BCD number

representing value 12

Add the BCD number
representing value 23

to the accumulator

10

Save the accumulator
contents in location

00E0

10

H

Select decimal
arithmetic mode

START

Add the BCD number
representing value 57

to the accumulator
10

The Assembly Language Program will be as opposite:

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

LJ Technical Systems 111

 ORG $0400 ;Defines the start address

0400 F8 SED ;Sets the D-Flag so ALU will now perform
 ;decimal arithmetic

0401 A9 LDA #$12 ;Loads accumulator with the BCD number
0402 12 ;representing the decimal value 12.

0403 18 CLC ;Clears the carry flag

0404 69 ADC #$23 ;Adds the BCD number representing the decimal
0405 23 ;value 23, to the accumulator

0406 69 ADC #$57 ;Adds the BCD number representing the decimal
0407 57 ;value 57, to the accumulator

0408 85 STA $E0 ;Saves the contents of the accumulator in
0409 E0 ;location 00E0H

040A 60 RTS ;Returns to MAC III monitor

Examine the contents of location 00E0H before execution. Check this location
again after the program has been executed and verify that it contains the BCD
number representing 9210.

Notice that when the 6502 performs decimal arithmetic with BCD numbers, the
result itself is also a BCD number.

 7.7a In the program for Worked Example 7.7, the addressing mode used
by the instruction " LDA #$12 " is:

a absolute

 b immediate

 c implied

 d zero page

 7.7b The program for Worked Example 7.7, is to be changed so that the
result will be saved in location 0500H. The instruction " STA $E0"
must be replaced by:

 a STA $05

 b STA $50

 c STA $0050

 d STA $0500

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

112 LJ Technical Systems

 7.8 Practical Assignment

Write a program, starting at location 0400H, which will perform binary addition of the contents
of memory locations 0050H, 0051H, and 0052H. The result should be saved in memory location
1000H.

Note: This requires binary arithmetic.

 7.8a Place the value 2BH in memory locations 0050H, 0051H, and 0052H.
Run your program for Practical Assignment 7.8 and enter the

hexadecimal value you find in location 1000H.

 7.8b Modify your program for Practical Assignment 7.8 so that it will
calculate the decimal sum of the contents of locations 0050H, 0051H,

and 0052H. Place the BCD number representing the decimal value

1910, into memory locations 0050H, 0051H, and 0052H. Run your

modified program, then enter the decimal value represented by the

BCD number which you find in location 1000H.

Please Note: From now on, binary arithmetic will be used for all additions and subtractions in
this manual unless otherwise stated.

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

LJ Technical Systems 113

 7.9 The Subtract Instruction

The 6502 performs subtraction by means of the SBC (Subtract with Carry)
instruction. This instruction will cause the contents of some specified memory
location to be subtracted from the contents of the accumulator, with borrow. In
arithmetic a "borrow" is the opposite of a "carry".

This means therefore that the opposite of the carry flag will be subtracted from
the result.

This is not really as complicated as it sounds. Recall that the carry flag must be
cleared prior to addition. In a similar way, the carry flag must be set prior to
subtraction.

This is because it is the opposite of the carry flag which is subtracted, so to
subtract 0 the carry flag must be at 1.

The reason for this structure in 6502 Addition and Subtraction instructions is that
it is required for calculations which exceed 8-bits. The carry flag allows a carry
(or a borrow) between one part of a multiple precision calculation and the next.

The Subtract instruction can be summarized thus:

- -
Opposite
of Carry
Flag

Contents of
Accumulator

Contents of
Specified
Memory
Location

Accumulator

Now, you will have noticed that it is only necessary to clear the carry flag once,
even if a number of ADC instructions follow.

This is because part of the action of the ADC instruction is to clear the Carry
Flag - unless the result exceeds 8-bits. In a similar way, it is only necessary to
set the Carry Flag once prior to a number of subtractions since the SBC
instruction will itself set the Carry Flag - unless a "borrow" is generated.

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

114 LJ Technical Systems

 7.10 Worked Example

Write a program which will subtract the value 1BH from the value 28H and save
the result in location 1100H.

START

END

Load the accumulator
with the value 28H

Subtract the value
1BH

from the accumulator

Save the result in
location 1100H

Select binary
arithmetic mode

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

LJ Technical Systems 115

The Assembly Language Program will be:

 ORG $0400 ;Defines start address

0400 D8 CLD ;Selects binary arithmetic mode

0401 A9 LDA #$28 ;Loads accumulator with the
0402 28 ;value 28H

0403 38 SEC ;Sets the carry flag

0404 E9 SBC #$1B ;Subtracts the value 1BH
0405 1B ;from the accumulator

0406 8D STA $1100 ;Saves the result in location 1100H
0407 00
0408 11

0409 60 RTS ;Returns to MAC III monitor

 7.10a Run the program for Worked Example 7.10. Examine the contents
of location 1100H. Enter the hexadecimal value you find at this
location.

 7.10b Modify the program for Worked Example 7.10 so that it will
subtract 4DH from 71H. Run your program and then examine the
contents of location 1100H. Enter the hexadecimal value you find at
this location.

 7.11 Practical Assignment

Write a program which will add the BCD number representing the value 2110 to the BCD number
at location 0070H and then subtract the BCD number at location 0510H from the result. The final
result must be stored as a BCD number in location 0520H.

 Note: This problem requires decimal arithmetic.

 7.11a Place the BCD number representing 3210 in memory location 0070H
and the BCD number representing 3410 in location 0510H. Run your
program for Practical Assignment 7.11 and enter the decimal value
represented by the BCD number at location 0520H.

 7.11b Modify your program for Practical Assignment 7.11 so that it will
perform binary arithmetic. Place the value 3EH in memory location
0070H and the value 42H in location 0510H. Run your modified
program and enter the hexadecimal value you find in location
0520H.

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

116 LJ Technical Systems

Student Assessment 7

1. The 6502 addressing mode in which no operand bytes are required is called:
 a Implied Addressing

 b Immediate Addressing

 c Absolute Addressing

 d Zero Page Addressing

2. In Zero Page addressing, the number of operand bytes required is:
 a 0

 b 1

 c 2

 d 3

3. In Absolute addressing, the total number of bytes for an instruction is:
 a 0

 b 1

 c 2

 d 3

4. The 6502 Assembly Language instruction "LDA $60" will load the accumulator:
 a with the value 60H

 b with the value 6010

 c from location 0060H

 d from location 006010

An Introduction to 6502 Addressing Modes
Microprocessor Applications Chapter 7

LJ Technical Systems 117

 Student Assessment 7 Continued …

5. The 6502 Assembly Language instruction which causes the microprocessor to perform
 decimal arithmetic is:
 a CLC

 b CLD

 c SEC

 d SED

6. When a 6502 Subtract instruction is executed, the Carry Flag:

 a is ignored

 b shows any Borrow

 c is subtracted from the result

 d is saved in the Accumulator

7. The 6502 Assembly Language instruction "SBC $1200" will subtract :

 a the value 1200H from the accumulator

 b the value 1210 from the accumulator

 c the contents of location 1200H from the accumulator

 d the contents of location 001210 from the accumulator

8. The machine code for the 6502 Assembly Language instruction "SBC #$3C" is:

 a A9 3C

 b A9 00 3C

 c E9 3C

 d E9 00 3C

Continued ...

Addressing Modes An Introduction to 6502
Chapter 7 Microprocessor Applications

118 LJ Technical Systems

Student Assessment 7 Continued …

9. The 6502 Assembly Language instructions required to subtract the contents of location
 0080H from the Accumulator are:

 a CLC
 SBC #80

 b CLC
 SBC $80

 c SEC
 SBC #80

 d SEC
 SBC $80

10. The program section:

 SED
 LDA #$48
 CLC
 ADC #$22

 a Performs decimal addition of 4810 and 2210

 b Performs binary addition of 48H and 22H

 c Performs decimal subtraction of 2210 from 4810

 d Performs binary subtraction of 22H from 48H

An Introduction to 6502 Negative Binary Numbers
Microprocessor Applications Chapter 8

Chapter 8 Negative Binary Numbers

LJ Technical Systems 119

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Form the 1's and 2's complements of binary numbers.

 Use complementary arithmetic to perform subtraction
with binary and hexadecimal numbers.

 Use complementary arithmetic to represent negative
binary and hexadecimal numbers.

Negative Binary Numbers An Introduction to 6502
Chapter 8 Microprocessor Applications

120 LJ Technical Systems

Introduction

In the everyday decimal numbering system, a negative number is denoted by a
minus sign. This is called “Sign Magnitude Form”. This system can also be used
for indicating negative binary numbers but unfortunately the microprocessor
cannot understand a minus sign. Clearly then an alternative method is required.
All microprocessors use Complementary Arithmetic to manipulate negative
numbers.

 8.1 Complementary Arithmetic

For any binary number there are two possible complements:

1’s Complement: Found by simply inverting each bit.

For example: The 1’s Complement of 10112 is 01002,
 so -10112 is 01002 in 1’s complement notation.

2’s Complement: Found by adding 1 to the 1’s complement.

For example: The 1’s Complement of 10112 is 01002;
 the 2’s complement of 10112 is 01002 + 12 = 01012
 so -10112 is 01012 in 2’s complement notation.

Almost all microprocessors use 2’s complement notation. This is important in the
understanding of relative addressing, which will be explained in a subsequent
chapter.

Consider 01102:

1’s complement of 01102 is 10012. Taking the 1’s complement again gives 01102.

Similarly, the 2’s complement of 01102 is 10012 + 12 = 10102

Taking the 2’s complement again gives 01012 + 12 = 01102.

So a complementary number may be converted back to an ordinary number by
simply taking the complement.

An Introduction to 6502 Negative Binary Numbers
Microprocessor Applications Chapter 8

LJ Technical Systems 121

8.2 Worked example

Evaluate 10111012 - 1010112 using 8-bit 2’s complements.

Solution:

Although 8-bit 2’s complements have been specified, neither of the values have 8
bits. It is most important in complementary arithmetic not to suppress leading
zero’s, since these become 1’s when complemented. So the first step is to insert
as many leading zeros as necessary in order to make both values 8-bits:

So the problem becomes 010111012 - 001010112.

Now, - 001010112 must be converted to 2’s complement form:

 First convert to 1’s complements:

 - 001010112 = + 110101002

 Then add one : + 110101002 + 12 = + 110101012

 So the problem now becomes 010111012 + 110101012

01011101
11010101

00110010

Carry out

+

1

So 10111012 - 1010112 = 001100102

The carry out can be ignored. It actually indicates the sign of the result. If the
result had been negative then the carry out would have been zero.

Negative Binary Numbers An Introduction to 6502
Chapter 8 Microprocessor Applications

122 LJ Technical Systems

 8.2a The 1's complement of 010010112 is:

 a 010010112

 b 010011002

 c 101101002

 d 101101012

 8.2b The 2's complement of 010010112 is:

 a 010010112

 b 010011002

 c 101101002

 d 101101012

 8.2c 1100012 - 111112 is:

 a 100102

 b 100112

 c 110012

 d 110102

An Introduction to 6502 Negative Binary Numbers
Microprocessor Applications Chapter 8

LJ Technical Systems 123

 8.3 Worked Example

Evaluate 2BH - 47H using 8-bit 2’s complements.

Solution:

In this case there are two new problems: the values are quoted in hexadecimal and
the result will be negative. The problem can be simply converted to binary thus:

 2BH - 47H = 0010 10112 - 0100 01112

Now, as before - 0100 01112 must be converted to 2’s complement form:

First convert to 1’s complements:

 - 0100 01112 = + 1011 10002

Then add one : + 1011 10002 + 12 = + 1011 10012

So the problem now becomes 0010 10112 + 1011 10012

0010 1011
1011 1001

1110 0100

Carry out

+

0

Now, the Carry Out is zero so this result is negative. It is expressed in 2’s
complement form and may be converted to sign magnitude form by simply taking
the 2’s complement:

The 1’s complement is 0001 10112 so the 2’s complement is 0001 10112 + 12 =
0001 11002.

Thus: 2BH - 47H = 0010 10112 - 0100 01112

 = - 0001 11002 = - 1CH

Negative Binary Numbers An Introduction to 6502
Chapter 8 Microprocessor Applications

124 LJ Technical Systems

 8.3a The 1's complement of 3EH is:

 a 3FH

 b C0H

 c C1H

 d C2H

 8.3b The 2's complement of 60H is:

 a 9FH

 b A0H

 c BFH

 d C0H

 8.3c 3EH - 0DH is:

 a 31H

 b 6EH

 c E3H

 d F3H

An Introduction to 6502 Negative Binary Numbers
Microprocessor Applications Chapter 8

LJ Technical Systems 125

8.4 Worked Example

Express - 1H using 8-bit 2’s complements.

Solution:

1’s complement: - 0000 00012 = + 1111 11102

2’s complement: + 1111 11102 + 12 = + 1111 11112

that is: FFH

 8.4a The 8-bit 2's complement form of -21H is:

 a 3EH

 b 3FH

 c DEH

 d DFH

 8.4b Enter the 8-bit 2's complement form of -55H (in hexadecimal).

Negative Binary Numbers An Introduction to 6502
Chapter 8 Microprocessor Applications

126 LJ Technical Systems

 8.5 Worked Example

Express - 2H using 8-bit 2’s complements.

Solution:

- 2H = - 0000 00102

1’s complement: - 0000 00102 = + 1111 11012

2’s complement: + 1111 11012 + 12 = + 1111 11102

that is: FEH

If you continue to find -3H, -4H, -5H and so on you will discover the values FDH,
FCH and FBH respectively. So, as the negative value increases, the count in
hexadecimal decreases.

 8.5a Enter the 8-bit 2's complement form of -BH (in hexadecimal).

 8.5b 39H - 62H is:

 a -28H

 b -29H

 c -D7H

 d -D8H

An Introduction to 6502 Negative Binary Numbers
Microprocessor Applications Chapter 8

LJ Technical Systems 127

Student Assessment 8

 1. The 1's complement of 0010 11102 is:
 a 0010 11102

 b 1101 00012

 c 1101 00102

 d 1101 00112

 2. The 2's complement of 0110 01112 is:
 a 0110 01112

 b 0110 10002

 c 1001 10002

 d 1001 10012

 3. The 2's complement of a binary number is found by:
 a inverting each bit of the binary number.

 b adding 1 to the 1's complement.

 c adding 2 to the 1's complement.

 d subtracting 1 from the 1's complement.

 4. The value -0011 01112 can be represented using 8-bit 2's complements as:
 a +0011 01112

 b +0011 10012

 c +1100 10002

 d +1100 10012

Continued ...

Negative Binary Numbers An Introduction to 6502
Chapter 8 Microprocessor Applications

128 LJ Technical Systems

Student Assessment 8 Continued ...

 5. The value -37H can be represented using 8-bit 2's complements as:
 a +B8H

 b +B9H

 c +C8H

 d +C9H

 6. The result of the subtraction 0100 11112 - 0010 11012 is:

 a 0010 00102

 b 0010 00112

 c 1101 00102

 d 1101 00112

 7. The result of the subtraction 69H - 4CH is:
 a 1CH

 b 1DH

 c B5H

 d E3H

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

Chapter 9 Programs with Loops

LJ Technical Systems 129

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Describe the different types of program loop structure.

 Describe the use of the conditional and unconditional
JUMP and BRANCH instructions.

 Explain the mechanism and use of 6502 relative
addressing.

 Describe the function and operation of the following
6502 flags:

 Carry Flag
 Zero Flag

 Write programs which use the conditional and
unconditional JUMP and BRANCH instructions.

Equipment
Required for
this Chapter

 MAC III 6502 Microcomputer.
 Power supply.
 Keypad/display unit.
 Merlin Development System Software Pack, installed on a PC

running Windows 95 or later.
 6502 Instruction Set Reference Manual.
 MAC III 6502 User Manual.

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

130 LJ Technical Systems

Introduction

Often it will be necessary to use a program loop to repeat a section of a program
a number of times. There are three main types of program loop:

1. Repeating a program section indefinitely

 For example: Output a “1” on bit 2 of a data port indefinitely.

Enter

Output a "1" on
Bit 2 of Data Port

2. Repeating a program section until some predetermined condition becomes
true.

 For example: Waiting for a “1” to be input at bit 4 of a data port.

Enter

Is
Bit 4
=1
?

Exit

Yes

No

Read bit 4
of Data Port

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 131

3. Repeating a program section for a predetermined number of passes.

 For example: Output a “0” on bit 6 of a data port for the time it takes
to repeat a loop 5000 times.

Enter

Exit

Set Count to
5000

Reduce
Count by 1

NoIs
count
= 0 ?

Yes

Output a "0" on
Bit 6 of Data Port

If, in this example, each pass through the loop were to take 1µs, a "0" would be
output on bit 6 of the data port for 5ms.

In order to write assembly language programs with loops, it will be necessary to
use JUMP and BRANCH instructions. These can be conditional or unconditional.

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

132 LJ Technical Systems

9.1 JUMP and BRANCH Instructions

These instructions cause program execution to be continued from some point
other than the next location in sequence.

There are two types of JUMP/BRANCH instruction:

Unconditional JUMP/BRANCH- "Always JUMP/BRANCH "

Conditional JUMP/BRANCH - "Only JUMP/BRANCH if some condition is
 true"

In 6502 Assembly Language, a conditional jump is referred to as a BRANCH. An
unconditional jump is simply referred to as a JUMP.

You have already used the Absolute JUMP instruction (JMP). Recall that the
Absolute Address of the destination for the Jump is specified by the two bytes
following the opcode byte, low byte first.

The 6502 BRANCH instructions all use relative addressing.

 9.2 Relative addressing

In this mode of addressing, the destination for the BRANCH is not specified
absolutely (for example "location 021BH") but is expressed in terms of the
number of locations further on (or back) in the program (for example "8 locations
further on").

The 6502 Branch instructions have two parts:

1. The operator code which defines the condition on which branching will/will
 not occur.

2. A 2's complement displacement (or offset) which specifies the destination in
terms of the number of bytes forward or backward.

The displacement is added to the Program Counter to produce the destination
address.

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 133

For example:

BRANCH QQ

PP represents the opcode defining
condition upon which the branch
will/will not occur

0405 PP
0406 QQ

QQ represents the 2's complement
displacement, used by the CPU to
calculate the destination address

 Forward Branching

Consider the following generalized instruction:

 0400 PP BRANCH 05
 0401 05

If the branch is taken, then 05H is added to the Program Counter to calculate the
destination address. Now, it is important to note that the program counter will
already be pointing to the next instruction in sequence (i.e. 0402H). The
Destination Address can therefore be calculated thus:

 0402H + 05H = 0407H
 | | |
 | | |
 Program + 2's Complement = Destination
 Counter Displacement Address

 Backward Branching

Consider the following generalized instruction:

 0400 PP BRANCH FA
 0401 FA

If the branch is taken, then FAH is added to the Program Counter to calculate the
destination address. Again, the program counter will be pointing to the next
instruction (i.e. 0402H).

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

134 LJ Technical Systems

The Destination Address can therefore be calculated thus:

 FAH = +1111 10102

 Taking the 1's complement: +1111 10102 = -0000 01012
 Adding 1 to form the 2's complement:

 0000 01012 + 12 = -0000 01102
 -0000 01102 = -06H

 So the calculation becomes:

 0402H + -06H = 03FCH
 | | |
 | | |
 Program + 2's Complement = Destination
 Counter Displacement Address

 Range of Relative Addressing

The displacement for 6502 BRANCH instructions is always 8 bits in length. The
largest possible positive offset will therefore be 7FH (0111 11112) which is
12710.

This means that it is not possible to perform a relative BRANCH more than 12710
locations in the forward direction.

Now, the largest possible negative offset will be 80H (1000 00002).

 80H = + 1000 00002
 = - 0111 11112 (1's complement)
 = - 1000 00002 (2's complement)
 = - 80H
 = - 12810

So the limit of a backward relative BRANCH is 12810 locations.

In this Section, we have seen how the Destination Address for a BRANCH
instruction can be calculated by adding the Program Counter contents to the 2's
Complement Displacement. Later on we will calculate the 2's Complement
Displacement for a BRANCH instruction, given the current Program Counter
position and the required Destination Address.

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 135

 9.2a The types of 6502 instructions which allow program execution to
continue from a point other than the next location in sequence are

called:
 a Sequence or Over-ride instructions.

 b Skip or Goto instructions.

 c Mark Place instructions.

 d Jump or Branch instructions.

 9.2b In relative addressing, the destination is specified by:

a a 2's complement displacement.

 b an absolute address.

 c the contents of the status register.

 d the contents of the X and Y registers.

 9.3 Conditional Instructions

A conditional BRANCH is only taken if some predetermined condition is true.
Otherwise the next instruction in sequence is executed. These instructions are
very important since they allow the microprocessor to take decisions.

The conditions which these instructions test are the states of individual bits within
the status register (or Flag register).

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

136 LJ Technical Systems

 6502 Status Register

Each bit (or "flag") within the Status Register (or "Condition Code Register") is a
single flip-flop which can store a 0 or a 1. These flags indicate the nature of the
result of the last Arithmetic operation. Many instructions will affect various flags.

The 6502 Status Register has 7 flags thus:

N V - B D I Z C

Carry Flag

Zero Flag

Interrupt Disable
Fl
Decimal Flag

Break Flag

2's Complement
Overflow Flag

Negative Flag

We shall only consider two of these flags for the present - the Carry Flag and the
Zero Flag.

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 137

 Carry Flag

This flag is set (i.e. = 1) if the result of the last arithmetic operation is greater than
8 bits. For example:

If 3AH is added to 47H the result is 81H and there is no carry out:

3A
47

0011 1010
0100 0111

 1000 0001

2
+

H

2

H

2
+

81 H

So the carry flag is cleared (C = 0).

However, if 3AH is added to E7H the result is 121H. Thus a carry out is
generated:

3A
E7

0011 1010
1110 0111

1 0010 0001

2

Carry Out

+
H

2

H

2
+

121H

and the carry flag is set (C = 1).

The carry flag is also used as a "borrow" flag when performing subtraction.

 Zero Flag

This flag is set (i.e. = 1) if the result of the last operation was zero. For example,
if the microprocessor subtracts 34H from 34H the result is 00H and the zero flag is
set (Z=1). If 34H is added to 34H the result is 68H which is non-zero so the zero
flag is cleared (Z=0).

The action of the Zero and Carry flags can be summarized thus:

EQ Result Equal to Zero (Z=1)
NE Result Not Equal to Zero (Z=0)
CS Carry Flag Set (C=1)
CC Carry Flag Cleared (C=0)

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

138 LJ Technical Systems

Now, refer to the 6502 Instruction Set Reference Manual for some of the
instructions you have met so far. Note how the Zero and Carry Flags are affected
by each instruction:

 Instruction Zero Flag Carry Flag

 LDA Set if accumulator is loaded Not affected
 with zero, otherwise cleared

 STA Not affected Not affected

 ADC Set if result is zero, Set if a carry is generated,
 otherwise cleared otherwise cleared

 SBC Set if result is zero, Cleared if a Borrow is generated,
 otherwise cleared otherwise set

 RTS Not affected Not affected

 JMP Not affected Not affected

 9.3a After the 6502 has subtracted 4AH from 67H, the Zero (Z) and
Carry (C) Flags will be:

 a C=0, Z=0.

 b C=0, Z=1.

 c C=1, Z=0.

 d C=1, Z=1.

 9.3b After the 6502 has added 52H to 67H, the Zero (Z) and Carry (C)
Flags will be:

 a C=0, Z=0.

 b C=0, Z=1.

 c C=1, Z=0.

 d C=1, Z=1.

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 139

 9.3c After the 6502 has added 75H to 8EH, the Zero (Z) and Carry (C)
Flags will be:

 a C=0, Z=0.

 b C=0, Z=1.

 c C=1, Z=0.

 d C=1, Z=1.

 9.3d After the 6502 has subtracted 72H from 72H, the Zero (Z) and Carry
(C) Flags will be:

 a C=0, Z=0.

 b C=0, Z=1.

 c C=1, Z=0.

 d C=1, Z=1.

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

140 LJ Technical Systems

 9.4 Conditional Branch Instructions

Each of the Conditional Branch Instructions will test for a different flag set (=1)
or clear (=0). If the condition is true, then the displacement is added to the
Program Counter and execution continues from a point other than the next
instruction. However, if the condition is not true execution will continue with the
next instruction in memory.

The Conditional Branch Instructions which test the Carry and Zero Flags are:

 BEQ Branch if Result Equal to Zero (Z=1)
 BNE Branch if Result Not Equal to Zero (Z=0)
 BCS Branch if Carry Flag Set (C=1)
 BCC Branch if Carry Flag Cleared (C=0)

The Negative and 2's Complement Overflow flags may also be tested by
corresponding branch instructions. However, we shall concentrate upon the Z-
and C-Flags initially.

Note that for each Conditional Branch Instruction a displacement must be
specified, which will be added to the Program Counter if the tested condition is
true. This 2's complement displacement is calculated by counting forwards or
backwards from the current Program Counter position to the Destination Address
(the address you wish to branch to).

Remember that the program counter will be pointing to the start of the next
instruction in memory after the branch instruction.

In 6502 assembly language, we use a label to identify the destination for a
branch.

Example 1:

Address Machine Code Assembly Lang. Comments
0400
0401

0402
0403
0404
0405
0406

F0
03

A9
AA
18
65
F0

 BEQ DEST

 LDA #$AA

 CLC
DEST: ADC $F0

;Branches 3 locations forward from
;current Program Counter value if
;zero flag is set (ie if Z = 1)

;Destination for BEQ instruction

In the above example, the destination for the branch is identified by label 'DEST'
in the left-hand column of the assembly language. The displacement for the
branch instruction is calculated by counting forwards from location 0402H to the

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 141

destination address (0405H). Three bytes are counted, so the displacement
required at address 0401H is 03H.

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

142 LJ Technical Systems

Example 2:

Address Machine Code Assembly Lang. Comments
0500
0501
0502
0503
0504
0505

0506

18
6D
00
06
90
FA

60

LOOP: CLC
 ADC $0600

 BCC LOOP

 RTS

;Destination for BCC instruction

;Branches 6 locations backwards
;(FAH = -6H) from current Program
;Counter value if carry flag is
;clear (ie if C = 0)

In this second example, the label ‘LOOP’ in the left-hand column of the assembly
language identifies the destination for the branch. The displacement for the
branch instruction is calculated by counting backwards from location 0506H to
the destination address (0500H). Six bytes are counted, so the displacement
required at location 0505H is the 2's complement value representing - 6H. This
value is FAH.

The 6502 Cross Assembler will calculate the 2's complement displacement for
each branch instruction automatically from the labels in your assembly language
program. Note the colon (:) which appears after each label in the left-hand
column of the assembly language; this is a requirement of the Cross Assembler.

 9.4a The 6502 assembly language instruction "BNE WAIT" will branch
to the location identified by the label 'WAIT' if:

 a the Carry Flag is set (C=1).

 b the Carry Flag is clear (C=0).

 c the Zero Flag is set (Z=1).

 d the Zero Flag is clear (Z=0).

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 143

 9.5 Worked Example

Write a program which will add the contents of locations 0500H and 0501H. The
value 80H should be placed in location 0502H if the result exceeds FFH,
otherwise 01H should be placed in location 0502H.

This problem requires the carry flag to be tested following the addition and then a
marker value to be saved to indicate the status of the result.

Yes

END

START

Select binary
arithmetic mode

Load the
accumulator from

location 0500H

Add contents of
location 0501H to

accumulator

Is the
Carry Flag

Set?

Load the
accumulator with

01H

Save the
accumulator in
location 0502H

Load the
accumulator with

80H

No

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

144 LJ Technical Systems

The Assembly Language Program will be:

 ORG $0400 ;Defines the start address
0400 D8 CLD ;Selects binary arithmetic mode
0401 AD LDA $0500 ;Loads the accumulator from location 0500H
0402 00
0403 05
0404 18 CLC
0405 6D ADC $0501 ;Adds the contents of location 0501H to
0406 01 ;the accumulator
0407 05
0408 B0 BCS CSET ;Is the Carry Flag Set ?
0409 06
040A A9 LDA #$01 ;C=0 so load accumulator with the marker
040B 01 ;value 01H
040C 8D STA $0502 ;Save marker value in location 0502H
040D 02
040E 05
040F 60 RTS ;Returns to MAC III system
0410 A9 CSET: LDA #$80 ;C=1 so load accumulator with the marker
0411 80 ;value 80H
0412 8D STA $0502 ;Save marker value in location 0502H
0413 02
0414 05
0415 60 RTS ;Returns to MAC III system

 9.5a Load the above program into the MAC III and then place the
following values into MAC III memory:

 Location Contents

 0500H 12H
 0501H 34H

Run the program and examine the contents of location 0502H. Enter
the hexadecimal value which you find.

 9.5b With the above program still loaded into MAC III memory, modify
the following locations as indicated below:

 Location Contents

 0500H ABH
 0501H CDH

Run the program again and examine the contents of location 0502H.
Enter the hexadecimal value which you now find.

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 145

The assembly language program for Worked Example 9.5 could have been
written in a slightly different way, avoiding the need for repetition of the STA
and RTS instructions thus:

 ORG $0400 ;Defines the start address
0400 D8 CLD ;Selects binary arithmetic mode
0401 AD LDA $0500 ;Loads the accumulator from location 0500H
0402 00
0403 05
0404 18 CLC
0405 6D ADC $0501 ;Adds the contents of location
0406 01 ;0501H to the accumulator
0407 05
0408 B0 BCS CSET ;Is the Carry Flag Set ?
0409 05
040A A9 LDA #$01 ;C=0 so load accumulator with
040B 01 ;the marker value 01H
040C 4C JMP SAVE ;Jump to save marker value instruction
040D 11
040E 04
040F A9 CSET: LDA #$80 ;C=1 so load accumulator with the marker
0410 80 ;value 80H
0411 8D SAVE: STA $0502 ;Save marker value in location
0412 02 ;0502H
0413 05
0414 60 RTS ;Returns to MAC III system

 9.5c Load this modified program into the MAC III and place the
following values in MAC III memory:

 Location Contents

 0500H 56H
 0501H 78H

Run the program and examine the contents of location 0502H. Enter
the hexadecimal value which you find.

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

146 LJ Technical Systems

 9.6 Worked Example

Write a program which will add the contents of locations 0500H and 0501H. The
most significant byte of the result should be stored in location 0502H and the least
significant byte in location 0503H. Now, consider the largest possible values:
FFH + FFH = 01 FEH

So the most significant byte can only be 00H or 01H.

The program must perform the addition, save the least significant byte and then
test the carry flag to determine whether the most significant byte is 00H or 01H.

Yes

No

END

Select binary
arithmetic mode

Load the
accumulator from

location 0500H

Add contents of
location 0501H to

accumulator

Load the
accumulator with

01H

Save the
accumulator in
location 0502H

Load the
accumulator with

00H

START

Save the
accumulator in
location 0503H

Is the
Carry Flag

Set?

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 147

The Assembly Language program will be:

 ORG $0400 ;Defines the start address
0400 D8 CLD ;Selects binary arithmetic mode
0401 AD LDA $0500 ;Loads the accumulator from location 0500H
0402 00
0403 05
0404 18 CLC
0405 6D ADC $0501 ;Adds the contents of location
0406 01 ;0501H to the accumulator
0407 05
0408 8D STA $0503 ;Saves the least significant byte in
0409 03 ;location 0503H
040A 05
040B B0 BCS CSET ;Is the Carry Flag Set ?
040C 06

040D A9 LDA #$00 ;C=0 so load accumulator with the value 00H
040E 00
040F 8D STA $0502 ;Save most significant byte in location 0502H
0410 02
0411 05
0412 60 RTS ;Returns to MAC III system

0413 A9 CSET: LDA #$01 ;C=1 so load accumulator with the value 01H
0414 01
0415 8D STA $0502 ;Save most significant byte in location 0502H
0416 02
0417 05

0418 60 RTS ;Returns to MAC III system

 9.6a Use the program for Worked Example 9.6 to calculate 67H + 89H.
Enter the result you find.

 9.6b Use the program for Worked Example 9.6 to calculate CDH + EFH.
Enter the result you find.

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

148 LJ Technical Systems

 9.7 Practical Assignment

Write a program which will examine the contents of location 0500H. If the contents are 00H,
location 00FFH should be loaded with 80H. If the contents are non-zero, location 00FFH should
be loaded with 7FH.

 9.7a Load your program for Practical Assignment 9.7 into the MAC III.
Place the value 56H in memory location 0500H. Run your program
and then examine the contents of location 00FFH. Enter the
hexadecimal value which you find.

 9.7b With your program for Practical Assignment 9.7 still loaded in
MAC III memory, now place the value 00H in memory location
0500H. Run your program again and examine the contents of
location 00FFH. Enter the hexadecimal value which you find.

 9.8 Loop Counters

So far programs have been decision-making rather than repeated loops. Consider
now the problem of repeating a section of a program a given number of times.
These types of programs often use a register or memory location as a loop
counter.

The loop counter is decremented (decreased by 01H) on each pass through the
loop and tested for zero. When the counter reaches zero the program exits from
the loop and continues. This is a fundamental technique in assembly language
programming.

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 149

 9.9 Worked Example

Write a program which will increase the contents of location 0500H, in steps of
01H, by 07H.

Memory location 00FFH can be used as a convenient loop counter:

Increment
location 0500H

No

Yes

END

Is the
zero flag

set ?

Decrement
location 00FFH

Load memory location
00FFH with the count

START

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

150 LJ Technical Systems

The Assembly Language program will be:

 ORG $0400 ;Defines the start address
0400 A9 LDA #$07 ;Loads the accumulator with the
0401 07 ;count value (07H)
0402 85 STA $FF ;Saves the count value in location 00FFH
0403 FF
0404 EE LOOP: INC $0500 ;Adds 01H to the contents of location 0500H
0405 00
0406 05
0407 C6 DEC $FF ;Reduces the count value by 01H
0408 FF
0409 D0 BNE LOOP ;If the count value is NOT zero,
040A F9 ;branch back to location 0404H
040B 60 RTS ;Returns to MAC III system

 9.9a Load the above program into the MAC III. Place the value 28H in
memory location 0500H. Run your program and then examine the
contents of location 0500H. Enter the hexadecimal value which you
find.

 9.10 Practical Assignment

Location 0500H contains a value between 00H and 12H which is to be multiplied by the value
0EH. Write a program which will perform this multiplication, saving the result in location 00F0H.

 HINT: A simple means of achieving multiplication is to add a value to itself a given
 number of times.

 9.10a Use your program for Practical Assignment 9.10 to calculate
0AH x 0EH. Enter the result you find.

 9.10b Modify your program for Practical Assignment 9.10 to calculate
09H x 08H. Enter the result you find.

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 151

 Student Assessment 9

1. The type of structure used to repeat a section of program several times is called:

 a an Echo

 b a Go To

 c a Loop

 d a Repeat

2. The program section described by the flowchart shown below will:

 a repeat indefinitely

 b repeat until a condition becomes true

 c repeat for a given number of passes

 d not repeat

Read Data
Port

ENTER

EXIT

No

Yes

 Is
 Bit 2
 = 1?

3. The type of JUMP or BRANCH which is always taken is called a:

 a Conditional Jump or Branch

 b Direct Jump or Branch

 c Indirect Jump or Branch

 d Unconditional Jump or Branch

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

152 LJ Technical Systems

Student Assessment 9 Continued …

4. The types of JUMPs or BRANCHes which allow the microprocessor to make decisions
 are called:
 a Conditional Jumps or Branches

 b Direct Jumps or Branches

 c Indirect Jumps or Branches

 d Unconditional Jumps or Branches

5. The type of addressing where the destination is expressed in terms of the number of
 bytes forward or backward from the present location is called:
 a Conditional

 b Direct

 c Indirect

 d Relative

6. The largest positive 8-bit offset for relative addressing is:
 a 12510

 b 12610

 c 12710

 d 12810

7. The assembly language instruction at location 0418H is "BCC INCPRT". If the
 location identified by the label "INCPRT" is 041EH, the 2's complement displacement
 for the branch instruction will be:
 a F8H

 b 04H

 c FAH

 d 06H

Continued ...

An Introduction to 6502 Programs with Loops
Microprocessor Applications Chapter 9

LJ Technical Systems 153

 Student Assessment 9 Continued …

8. The Carry Flag is set when the result of the last arithmetic operation is:

 a zero

 b non-zero

 c less than 8 bits

 d greater than 8 bits

9. The Flag which is set when the result of the last arithmetic operation is zero is the:

 a Carry Flag

 b Negative Flag

 c Overflow Flag

 d Zero Flag

10. The program section which will repeatedly (and indefinitely) add 02H to the
 Accumulator is:

 a HERE: ADC #$02

 JMP HERE

 b HERE: ADC #$02

 BEQ HERE

 c HERE: ADC #$02

 BCS HERE

 d HERE: ADC #$02

 BCC HERE

Programs with Loops An Introduction to 6502
Chapter 9 Microprocessor Applications

154 LJ Technical Systems

Student Assessment 9 Continued …

11. The program section below will add the contents of location 2000H to the Accumulator:

 NEXT: ADC $2000

 BCS DONE

 JMP NEXT

 a indefinitely

 b until the result is greater than 8 bits

 c until the result is less than 8 bits

 d until the result is equal to 2000H

An Introduction to 6502 Further Programs with Loops
Microprocessor Applications Chapter 10

Chapter 10 Further Programs with Loops

LJ Technical Systems 155

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Describe the operation of the COMPARE instruction.

 Explain how the COMPARE instruction will affect the
Carry and Zero flags.

 Write programs which use the COMPARE instruction.

Equipment
Required for
this Chapter

 MAC III 6502 Microcomputer.
 Power supply.
 Keypad/display unit.
 Merlin Development System Software Pack, installed on a PC

 running Windows 95 or later.
 MAC III 6502 User Manual.

Further Programs with Loops An Introduction to 6502
Chapter 10 Microprocessor Applications

156 LJ Technical Systems

Introduction

In the previous chapter you learned how to detect if the contents of the
accumulator were zero or exceeded FFH. In this chapter you will learn how to
determine if the contents of the accumulator are any given value by using the
COMPARE instruction.

 10.1 The Compare Instruction

Consider the problem of testing the accumulator to see if it contains 21H.
Subtracting 21H from the accumulator would cause the zero flag to be set if the
accumulator had contained 21H. A simple example is shown below:

 ORG $0400 ;Defines the start address
0400 D8 CLD ;Selects binary arithmetic mode
0401 AD LDA $0500 ;Loads the accumulator from location 0500H
0402 00
0403 05
0404 38 SEC
0405 E9 SBC #$21 ;Subtracts 21H from the accumulator
0406 21
0407 F0 BEQ ZERO ;If the result is zero, branch to
0408 05 ;location 040EH
0409 A9 LDA #$55
040A 55
040B 85 STA $F0 ;Saves the marker 55H in location 00F0H
040C F0
040D 60 RTS ;Returns to MAC III system
040E A9 ZERO: LDA #$AA
040F AA
0410 85 STA $F0 ;Saves the marker AAH in location 00F0H
0411 F0
0412 60 RTS ;Returns to MAC III system

This program will save the marker value AAH in location 00F0H if the contents
of location 0500H are 21H. If the contents of location 0500H are not 21H, the
marker value 55H is saved.

The only difficulty with this technique is that it destroys the contents of the
accumulator. Now, since this is a very common problem in assembly language
programming, all microprocessors provide a special instruction which is like
subtraction but does not destroy the accumulator contents.

An Introduction to 6502 Further Programs with Loops
Microprocessor Applications Chapter 10

LJ Technical Systems 157

This is the COMPARE instruction. When a COMPARE is executed, the result of
the subtraction is lost but the status register flags are conditioned to reflect the
nature of the result (for example, zero flag set/clear).

The COMPARE instruction will condition 3 flags:

 Zero Flag.
 Carry Flag.
 Negative Flag.

You have not yet met the Negative Flag but its operation is quite simple: The
negative flag is set when the last ALU operation gives a negative 2's complement
result.

The COMPARE instruction affects the Zero and Carry flags specifically thus:

 Zero Flag:

 Set if accumulator equals data.
 Clear if accumulator does not equal data.

 Carry Flag:

 Set if accumulator is greater than or equal to data.
 Clear if accumulator is smaller than data.

The loop counter programs in the last chapter all counted down to zero. You can
now use COMPARE to allow counting up from zero to any desired value.

You can also use COMPARE to detect the greater of two values.

In 6502 assembly language there are a number of ways of using compare. These
include:

 compare immediate data with the accumulator.

 compare the contents of a memory location with the accumulator.

Further Programs with Loops An Introduction to 6502
Chapter 10 Microprocessor Applications

158 LJ Technical Systems

So, the previous program section could be re-written thus:

 ORG $0400 ;Defines the start address
0400 AD LDA $0500 ;Loads the accumulator from
0401 00 ;location 0500H
0402 05
 0403 C9 CMP #$21 ;Compares the accumulator with 21H
0404 21

0405 F0 BEQ ZERO ;If the result is zero, branch to
0406 05 ;location 040CH

0407 A9 LDA #$55 ;Result is non-zero so saves the marker 55H
0408 55 ;in location 00F0H
0409 85 STA $F0
040A F0
040B 60 RTS ;Returns to MAC III system

040C A9 ZERO: LDA #$AA ;Result is zero so saves the marker AAH in
040D AA ;location 00F0H
040E 85 STA $F0
040F F0
0410 60 RTS ;Returns to MAC III system

Note that the operation of the COMPARE instruction is not affected by the state
of the Decimal flag, so the "CLD" instruction is no longer required.

 10.1a If the Accumulator contains the value 49H and then the instruction
"CMP #$49" is executed, the status of the Carry (C) and Zero (Z)
Flags will be:

a C=0, Z=0

 b C=0, Z=1

 c C=1, Z=0

 d C=1, Z=1

An Introduction to 6502 Further Programs with Loops
Microprocessor Applications Chapter 10

LJ Technical Systems 159

 10.1b The Accumulator initially contains the value 3AH. The instruction
"CMP #$25" is then executed. Enter the new contents of the

Accumulator (in hexadecimal).

 10.1c The Accumulator initially contains the value 77H. A COMPARE
instruction is executed. This sets the Carry (C) Flag and clears the

Zero (Z) Flag. The value which was compared with the

Accumulator was:

a less than 77H

b equal to 77H

c greater than 77H

d the Status Register

Further Programs with Loops An Introduction to 6502
Chapter 10 Microprocessor Applications

160 LJ Technical Systems

 10.2 Worked Example

Write a program that will inspect the contents of locations 0500H and 0501H. The
greater of these two values should be saved in location 0502H.

START

Yes

No

Load the accumulator
from location 0500H

END

Is
the Carry
Flag set

Compare with
contents of location

0501H

Save the greater
in location 0502H

Location 0501H is the
greater so load

accum from 5001H

Location 0500H is the
greater so leave it
in the accumulator

An Introduction to 6502 Further Programs with Loops
Microprocessor Applications Chapter 10

LJ Technical Systems 161

The Assembly Language program will be:

 ORG $0400 ;Defines the start address
0400 AD LDA $0500 ;Reads the contents of location
0401 00 ;0500H
0402 05
0403 CD CMP $0501 ;Compares accumulator with the
0404 01 ;contents of location 0501H
0405 05
0406 90 BCC CCLR ;If C=0, branch to location 040CH
0407 04

0408 8D STA $0502 ;C=1 so contents of 0500H are the
0409 02 ;greater (or equal), so save in
040A 05 ;location 0502H
040B 60 RTS ;Returns to MAC III system

040C AD CCLR: LDA $0501 ;C=0 so contents of 0501H are the
040D 01 ;greater. Load accumulator from
040E 05 ;location 0501H
040F 8D STA $0502 ;Saves greater value in location
0410 02 ;0502H
0411 05
0412 60 RTS ;Returns to MAC III system

Notice the instruction at location 0408H: There is no need to load the accumulator
again from 0500H, since the accumulator will already contain this value and is
unaffected by the CMP instruction.

 10.2a Load the program for Worked Example 10.2 into MAC III memory.
Place the value 46H in location 0500H and the value 71H in location
0501H. Run the program and examine the contents of location
0502H. Enter the hexadecimal value which you find.

Further Programs with Loops An Introduction to 6502
Chapter 10 Microprocessor Applications

162 LJ Technical Systems

 10.3 Worked Example

The contents of location 0500H are AAH or less. Write a program which will
examine the contents of location 0500H and then increase the contents in steps of
01H until 0500H contains AAH.

Yes

No

START

END

Is the
Zero

Flag set
?

Compare the
accumulator with

AAH
Increment

Location 0500H

Load the
accumulator

from location 0500H

The assembly language program will be:

 ORG $0400 ;Defines the start address
0400 A9 LDA #$AA ;Loads the value AAH into
0401 AA ;the accumulator
0402 CD LOOP: CMP $0500 ;Compares accumulator
0403 00 ;with the contents of
0404 05 ;location 0500H
0405 F0 BEQ SAME ;If contents of location
0406 06 ;0500H equal AAH, branch
 ;to 040DH
0407 EE INC $0500 ;Adds 01H to contents of
0408 00 ;0500H
0409 05
040A 4C JMP LOOP6 ;Jump back to location
040B 02 ;0402H
040C 04
040D 60 SAME: RTS ;Returns to MAC III system

An Introduction to 6502 Further Programs with Loops
Microprocessor Applications Chapter 10

LJ Technical Systems 163

 10.3a Load the program for Worked Example 10.3 into MAC III memory.
Place the value 52H in location 0500H. Run the program and then
examine the contents of location 0500H. Enter the hexadecimal value
which you find.

10.4 Practical Assignment

Write a program which will examine the contents of location 0050H. If this location contains 99H,
then location 0500H should be loaded with 81H. Otherwise location 0500H

should be loaded with
7EH.

 10.4a Load your program for Practical Assignment 10.4 into MAC III
memory. Place the value 3BH in location 0050H. Run the program
and then examine the contents of location 0500H. Enter the
hexadecimal value which you find.

 10.4b The number of times that your program for Practical Assignment
10.4 uses a "CMP" instruction is:

a once

 b twice

 c three times

 d four times

 10.5 Practical Assignment

Write a program which will inspect the contents of location 0580H. Location 00FFH should then
be loaded with a marker value thus:

 If the contents of location 0580H are:

 less than 37H: load location 00FFH with 80H
 equal to 37H: load location 00FFH with AAH
 greater than 37H: load location 00FFH with 01H

Further Programs with Loops An Introduction to 6502
Chapter 10 Microprocessor Applications

164 LJ Technical Systems

 10.5a Load your program for Practical Assignment 10.5 into MAC III
memory. Place the value 93H in location 0580H. Run the program
and then examine the contents of location 00FFH. Enter the
hexadecimal value which you find.

 10.5b Enter the number of times that your program for Practical
Assignment 10.5 uses a "CMP" instruction.

 10.6 Practical Assignment

Write a program which will inspect the contents of locations 0050H, 0051H and 0052H. The
largest of these should then be saved in location 0500H.

 10.6a Load your program for Practical Assignment 10.6 into the MAC III.
Place the values shown below in the memory locations indicated:

 Location Contents

 0050H 2DH
 0051H 71H
 0052H 5EH

Run your program and then examine the contents of location 0500H.
Enter the hexadecimal value which you find.

 10.6b With your program for Practical Assignment 10.6 still loaded in the
MAC III, change the values stored in the memory locations below
thus:

 Location Contents

 0050H 52H
 0051H 4AH
 0052H 67H

Run your program and then examine the contents of location 0500H.
Enter the hexadecimal value which you find.

An Introduction to 6502 Further Programs with Loops
Microprocessor Applications Chapter 10

LJ Technical Systems 165

 Student Assessment 10

1. The 6502 Assembly Language instruction which will subtract the contents of a memory
 location from the Accumulator and set or clear flags accordingly, without changing the
 contents of the memory location or the Accumulator is:
 a Compare

 b Loop

 c Subtract

 d Test

2. The 6502 Assembly Language instruction which can be used to check if the contents of
 the Accumulator are equal to 56H is:
 a CHK $56

 b CHK #$56

 c CMP $56

 d CMP #$56

3. Following a COMPARE instruction, both the Zero and Carry Flags are clear (i.e. = 0).
 This indicates that:
 a the accumulator contains zero.

 b the accumulator and operand are equal.

 c the accumulator is smaller than the operand.

 d the accumulator is greater than the operand.

4. If the accumulator is greater than the operand for a COMPARE instruction, the Zero
 and Carry Flags will be:
 a Z = 0 C = 0

 b Z = 0 C = 1

 c Z = 1 C = 0

 d Z = 1 C = 1

Continued ...

Further Programs with Loops An Introduction to 6502
Chapter 10 Microprocessor Applications

166 LJ Technical Systems

Student Assessment 10 Continued …

5. Consider the program section:

 CMP $1800
 BCC DEST1
 LDA #$11
 STA $60
 RTS
 DEST1: LDA #$88
 STA $60
 RTS

 The action of this program section will be to place the value:

 a 11H in location 0060H if the Carry Flag is clear.

 b 11H in location 0060H if the Zero Flag is set.

 c 88H in location 0060H if the Carry Flag is clear.

 d 88H in location 0060H if the Carry Flag is set.

6. For the program in Question 5 above; if the value in location 1800H was equal to
 the contents of the Accumulator, the value placed in location 0060H would be:

 a 60H

 b 11H

 c 00H

 d 88H

An Introduction to 6502 Indexed Addressing
Microprocessor Applications Chapter 11

Chapter 11 Indexed Addressing

LJ Technical Systems 167

Objectives of
this Chapter

Having studied this chapter you will be able to:

� Explain how the following instructions operate on
 the Index Registers:

 Load Index Register
 Store Index Register
 Compare Index Register
 Increment/Decrement Index Register
 Transfer Index Register

� Describe the operation of the following 6502
 Addressing Modes:

 Absolute Indexed-X
 Absolute Indexed-Y
 Zero Page Indexed-X
 Zero Page Indexed-Y

� Write programs which use the 6502 Indexed
 Addressing Modes.

Equipment
Required for
this Chapter

y MAC III 6502 Microcomputer.
y Power supply.
y Keypad/display unit.
y Merlin Development System Software Pack, installed on a PC
 running Windows 95 or later.
y MAC III 6502 User Manual.

Indexed Addressing An Introduction to 6502
Chapter 11 Microprocessor Applications

168 LJ Technical Systems

 Introduction

The 6502 has three General Purpose Registers:

 Accumulator
 X-Register
 Y-Register

You will already be familiar with the Accumulator but we have not yet
encountered the X- and Y-Registers. These are known as the Index Registers.

Index Registers may be used for general purpose applications (for example, as a
counter or for temporary storage of data) but their main use is in Indexed
Addressing.

The Indexed Addressing modes will be explained more fully later in this chapter.
Before progressing to using Indexed Addressing, we must first examine how the
Index Registers may be manipulated.

 11.1 The Index Registers

There are a number of instructions which can be used to operate upon data within
the Index Registers:

 Load Index Register (LDX, LDY)

The Index Registers can be loaded with a value from memory, using Immediate,
Absolute or Zero Page Addressing.

For example:

0412 A2 LDX #$45 ;Loads the X-Register with the
0413 45 ;value 45H

046D AC LDY $05E0 ;Loads the Y-Register from
046E E0 ;location 05E0H
046F 05

0487 A6 LDX $40 ;Loads the X-Register from
0488 40 ;location 0040H

An Introduction to 6502 Indexed Addressing
Microprocessor Applications Chapter 11

LJ Technical Systems 169

 Store Index Register (STX, STY)

The contents of Index Registers can be saved to a memory location, using
Absolute or Zero Page Addressing.

For example:

0431 8E STX $0502 ;Saves the X-Register in location 0502H
0432 02
0433 05

04A3 84 STY $90 ;Saves the Y-Register in location 0090H
04A4 90

 Compare Index Register (CPX, CPY)

The contents of Index Registers can be compared with values in memory using
Immediate, Absolute or Zero Page Addressing.

For example:

040A E0 CPX #$52 ;Compares the value 52H with
040B 52 ;the X-Register

0429 EC CPX $05B0 ;Compares the contents of
042A B0 ;location 05B0H with the X-Register
042B 05

0492 C4 CPY $38 ;Compares the contents of
0493 38 ;location 0038H with the Y-Register

 Increment/ Decrement Index Register (INX, INY, DEX,DEY)

The contents of Index Registers can be Incremented or Decremented, using
Implied Addressing.

For example:

0420 E8 INX ;Increases the contents of the
 ;X-Register by 01H

043C C8 INY ;Increases the contents of the
 ;Y-Register by 01H

0482 CA DEX ;Decreases the contents of the
 ;X-Register by 01H

04A2 88 DEY ;Decreases the contents of the
 ;Y-Register by 01H

Indexed Addressing An Introduction to 6502
Chapter 11 Microprocessor Applications

170 LJ Technical Systems

Transfer Index Register (TAX, TXA TAY, TYA)

Data can be duplicated between Index Registers and the Accumulator by using
the Transfer Instructions. These instructions use Implied Addressing.

For example:

0436 AA TAX ;Duplicates the contents of the
 ;accumulator in the X-Register
0452 8A TXA ;Duplicates the contents of the
 ;X-Register in the accumulator
0478 A8 TAY ;Duplicates the contents of the
 ;accumulator in the Y-Register
04A1 98 TYA ;Duplicates the contents of the
 ;Y-Register in the accumulator

It is not possible for the standard 6502 to transfer directly from one index register
to another. Such transfers must be through the accumulator.

For example: To copy the contents of the X-Register into the Y-Register:

04C2 8A TXA ;Duplicates the contents of the
 ;X-Register in the accumulator
04C3 A8 TAY ;Duplicates the contents of the
 ;accumulator in the Y-Register

 11.1a The 6502 instruction which will copy the contents of memory
location 0527H into the X Register is:

 a LDA $0527

 b LDX $0527

 c STA $0527

 d STX $0527

 11.1b The 6502 instruction "CPY $7A" will:
 a copy the value 7AH into the Y Register.

 b copy the contents of location 007AH into the Y Register.

 c compare the value 7AH with the Y Register.

 d compare the contents of location 007AH with the Y Register.

An Introduction to 6502 Indexed Addressing
Microprocessor Applications Chapter 11

LJ Technical Systems 171

 11.2 Indexed Addressing

In an Indexed Addressing Mode, the contents of an Index Register are added to
the operand to form the address of the data to be acted upon:

 Base + Index Register = Destination
 Address Contents Address

The Base Address may be expressed in terms of Absolute or Zero Page
addressing. Since the Index Register may be manipulated (for example
Incremented, Decremented, etc.), a range of addresses may be specified. Indexed
Addressing is frequently used in programs with a loop structure. The data source
or destination can be changed at each pass through the loop by Incrementing or
Decrementing the contents of the Index Register.

 11.3 Absolute Indexed Addressing

Consider the Assembly Language instruction:

0423 BD LDA $0520,X ;Loads the accumulator from
0424 20 ;the memory location
0425 05 ;0520H + X

Suppose the X-Register contained 15H, then the Destination Address would be
formed thus:

 Base + Index Register = Destination
 Address Contents Address

 0520H + 15H = 0535H

So this instruction would load the accumulator from location 0535H.

Indexed Addressing An Introduction to 6502
Chapter 11 Microprocessor Applications

172 LJ Technical Systems

Absolute Indexed-Y Addressing works in just the same way.

Consider the following program section:

045A A0 LDY #$62 ;Loads the Y-Register with
045B 62 ;the value 62H

045C 99 STA $0534,Y ;Saves the accumulator in
045D 34 ;the memory location
045E 05 ;0534H + Y

 Base + Index Register = Destination
 Address Contents Address

 0534H + 62H = 0596H

So this instruction would save the accumulator in location 0596H.

 11.4 Zero Page Indexed Addressing

These addressing modes are very similar to the Absolute Indexed Addressing
modes, except that the Base Address may only be within the range 0000H to
00FFH (Page Zero).

Consider the Assembly Language instruction:

04C7 B5 LDA $50,X ;Loads the accumulator from
04C8 50 ;memory location 0050H + X

Now, suppose the X-Register contained 20H, then the Destination Address would
be formed thus:

 Base + Index Register = Destination
 Address Contents Address

 0050H + 20H = 0070H

So this instruction would load the accumulator from location 0070H.

An Introduction to 6502 Indexed Addressing
Microprocessor Applications Chapter 11

LJ Technical Systems 173

 11.4a The 6502 program section:

 LDX #$2E
 LDA #$45
 STA $90,X

will place the value:

a 2EH in location 00D5H

 b 45H in location 00BEH

 c 45H in location 0011EH

 d 90H in location 0073H

 11.4b The 6502 instruction which will copy the contents of the memory
location in a data table starting at location 0200H and pointed to by
the Y Register into the accumulator is:

a LDA $0200,Y

 b LDY $0200,A

 c STA $0200,Y

 d STY $0200,A

Indexed Addressing An Introduction to 6502
Chapter 11 Microprocessor Applications

174 LJ Technical Systems

 11.5 Worked Example

Write a program that will fill page 05H of memory with the value 88H.

Yes

No

Reduce X-register
by 01H

Save the accumulator
in the 'Xth' location

Load Accumulator
with the value 88H

Load the X-register
with the value 00H

START

END

Is the Zero
Flag set

?

Notice that the count is initially set to zero and that the count is decremented
before each save instruction. On the first pass the X-register is at 00H. This will
then be decremented to FFH (wrap around). On the final pass the X-register
becomes zero again but the last location is filled before the X-register is tested by
the BNE instruction.

An Introduction to 6502 Indexed Addressing
Microprocessor Applications Chapter 11

LJ Technical Systems 175

The Assembly Language program will be:

 ORG $0400 ;Defines the start address
0400 A2 LDX #$00 ;Sets the count to zero
0401 00

0402 A9 LDA #$88 ;Loads the Accumulator
0403 88 ;with the 'fill' value

0404 CA LOOP: DEX ;Decrements the X-Register
0405 9D STA $0500,X ;Saves the accumulator in
0406 00 ;the 'Xth' location
0407 05

0408 D0 BNE LOOP ;If the X-register is not
0409 FA ;zero, branch back to
 ;location 0404H

040A 60 RTS ;Returns to MAC III system

 11.5a In the program above, the instruction which tests to see whether the
next location is to be filled with 88H is:

a DEX

b STA $0500,X

c BNE LOOP

d RTS

 11.5b Load the program above into the MAC III and then execute from
location 0400H. Examine the contents of location 0500H. Enter the
hexadecimal value which you find at this location.

Indexed Addressing An Introduction to 6502
Chapter 11 Microprocessor Applications

176 LJ Technical Systems

This is not the only possible solution to this type of problem. An alternative
strategy might have been:

Yes

NoIs the
Zero

Flag set
?

Save in the 'Xth'
location

Increase the
X-Register by 01H

Load Accumulator
with the value 88H

Load the X-register
with the value 00H

END

START

Again the count is initially set to zero but is now incremented after each save
instruction. On the final pass the X-register will be incremented from FFH to 00H
and the program will exit from the loop.

An Introduction to 6502 Indexed Addressing
Microprocessor Applications Chapter 11

LJ Technical Systems 177

The Assembly Language program will be:

 ORG $0400 ;Defines the start address
0400 A2 LDX #$00 ;Sets the count to zero
0401 00
0402 A9 LDA #$88 ;Loads the Accumulator
0403 88 ;with the 'fill' value
0404 9D LOOP: STA $0500,X ;Saves the accumulator in
0405 00 ;the 'Xth' location
0406 05
0407 E8 INX ;Increments the X-Register
0408 D0 BNE LOOP ;If the X-register is not
0409 FA ;zero, branch back to
 ;location 0404H
040A 60 RTS ;Returns to MAC III system

Modify the last program and run again to verify correct operation.

 11.6 Practical Assignment

Write a program that will fill locations 0500H to 0580H with the value AAH.

 11.6a Place the value 00H in location 0580H. Load your program for
Practical Assignment 11.6 into the MAC III and execute. Examine
the contents of location 0580H. Enter the hexadecimal value which
you find at this location.

 11.6b Place the value 00H in location 0581H. Check that your program for
Practical Assignment 11.6 is still loaded in the MAC III. Run the
program and then examine the contents of location 0581H. Enter the
hexadecimal value which you find at this location.

Indexed Addressing An Introduction to 6502
Chapter 11 Microprocessor Applications

178 LJ Technical Systems

 11.7 Practical Assignment

Write a program that will copy the block of data 0500H - 0520H to locations 0580H - 05A0H.

 11.7a Place the value 68H in location 0520H. Load your program for
Practical Assignment 11.7 into the MAC III and execute. Examine
the contents of location 05A0H. Enter the hexadecimal value which
you find at this location.

 11.7b Place the value 22H in location 05A1H. Check that your program for
Practical Assignment 11.7 is still loaded in the MAC III. Run the
program and then examine the contents of location 05A1H. Enter the
hexadecimal value which you find at this location.

 11.8 Practical Assignment

Write a program that will examine the contents of each location from 0040H to 0060H and save
the largest value found in location 00FFH.

 11.8a Place the value 00H in every location from 0040H to 0060H. Now
place the following values in the locations shown:

Location Contents

 0040H 45H
 0050H 67H
 0060H 32H

Load your program for Practical Assignment 11.8 into the MAC III
and execute. Examine the contents of location 00FFH. Enter the
hexadecimal value which you find at this location.

An Introduction to 6502 Indexed Addressing
Microprocessor Applications Chapter 11

LJ Technical Systems 179

 Student Assessment 11

1. The 6502 instruction that will save the contents of the X Register in location 0500H is:
 a STA $0500

 b STX $0500

 c STA $0500,X

 d STX $0500,A

2. The Y Register initially holds the value 4FH. After the instruction " DEY " has been
 executed, the contents of the Y Register will be:
 a 4CH

 b 4DH

 c 4EH

 d 50H

3. The instruction that copies the contents of the Accumulator into the X Register is:
 a TAX

 b TAY

 c TXA

 d TYA

4. The sequence of 6502 Assembly Language instructions required to transfer the contents
 of the X Register to the Y Register is:
 a TXA
 TAY

 b TXA
 TYA

 c TAX
 TAY

 d TAX
 TYA

Continued ...

Indexed Addressing An Introduction to 6502
Chapter 11 Microprocessor Applications

180 LJ Technical Systems

Student Assessment 11 Continued …

5. For the program section:

 LDX #$16
 LDA $0515,X

 The second instruction will load the accumulator from location:
 a 04FFH

 b 0515H

 c 052BH

 d 0531H

6. The mode of addressing used by the 6502 instruction "STA $0680,Y" is:
 a Absolute Indexed X

 b Absolute Indexed Y

 c Zero Page Indexed X

 d Zero Page Indexed Y

7. The 6502 instruction "LDA $80,X" will load:
 a the Accumulator from location 0080H

 b the Accumulator from location 0800H

 c the Accumulator from location (0080H - X)

 d the Accumulator from location (0080H + X)

8. The 6502 program section:
 LDX #$42
 STA $0800,X
 will:
 a Load the accumulator from location 0800H

 b Load the accumulator from location 0842H

 c Save the accumulator in location 0800H

 d Save the accumulator in location 0842H

An Introduction to 6502 Indexed Addressing
Microprocessor Applications Chapter 11

LJ Technical Systems 181

Student Assessment 11 Continued …

9. After the 6502 instruction sequence below has been executed,

 LDY #$4D
 STA $0780,Y
 DEY
 STA $0780,Y
 DEY
 STA $0780,Y

 the contents of the Y Register will be:

 a 4BH

 b 4CH

 c 4DH

 d 4EH

Indexed Addressing An Introduction to 6502
Chapter 11 Microprocessor Applications

182 LJ Technical Systems

An Introduction to 6502 Logical and Test Instructions
Microprocessor Applications Chapter 12

Chapter 12 Logical and Test Instructions

LJ Technical Systems 183

Objectives of
this Chapter

Having studied this chapter you will be able to:

� Apply the AND logical operator to binary data.

� Describe the operation of the following 6502
instructions:

 AND
 BIT
 SHIFT
 ROTATE

� Use the AND and BIT instructions to test any bit(s)
within the accumulator or a memory location.

� Write programs that use the instructions:

 AND
 BIT
 SHIFT
 ROTATE

Equipment
Required for
this Chapter

y MAC III 6502 Microcomputer.
y Power supply.
y Keypad/display unit.
y Merlin Development System Software Pack, installed on a PC
 running Windows 95 or later.
y MAC III 6502 User Manual.

Logical and Test Instructions An Introduction to 6502
Chapter 12 Microprocessor Applications

184 LJ Technical Systems

 Introduction

You have learned in the previous chapter how to detect if the contents of a
location or register are any given value. In this chapter you will learn how logical
instructions can be used to test individual bits (or groups of bits) within a location
or register.

 12.1 Logical Operators

You will already be familiar with the ways in which some arithmetic operators
can be applied to data (for example, ADC, SBC, etc). It is also possible to apply
logical operators to data (for example AND, OR, EXCLUSIVE-OR).

For example AND:

 Recall 0 AND 0 = 0 0 . 0 = 0
 0 AND 1 = 0 0 . 1 = 0
 1 AND 0 = 0 1 . 0 = 0
 1 AND 1 = 1 1 . 1 = 1

To AND together two binary numbers, the AND operator is applied bit by bit. For
example:
 0 1 1 0
 0 1 0 1
 0 1 0 0

 0 . 1 = 0
 1 . 0 = 0
 1 . 1 = 1
 0 . 0 = 0

So 01102 . 11012 = 01002

An Introduction to 6502 Logical and Test Instructions
Microprocessor Applications Chapter 12

LJ Technical Systems 185

Notice that any given bit in the result can only be 1 if both of the numbers have a
1 in that position. This property can be used to test for bits at 1 within a register
or location.

Consider 99H ANDed with a mask F0H:

 99H = 1001 10012 .
 F0H = 1111 00002
 ————————
 1001 00002 = 90H

This technique can be used to test for a number of bits within a register or
memory location. Worked Example 12.2 shows how this may be achieved.

 12.1a The Accumulator initially contains the value B7H. Enter the value
found in the Accumulator after it has been ANDed with C6H.

Logical and Test Instructions An Introduction to 6502
Chapter 12 Microprocessor Applications

186 LJ Technical Systems

 12.2 Worked Example

Write a program that will examine the contents of location 0500H. A marker
value of C0H should be saved in location 00F0H if any of bits 5, 6 and 7 of
location 0500H are set. Otherwise, a marker value of 03H should be placed in
location 00F0H.

Yes

No

Load the accumulator
from location 0500H

START

Is the
Zero

Flag set

And with a
mask for bits

5, 6 or 7

Load the accumulator
with marker for one of

the bits set

Load the accumulator
with marker for none

of the bits set

Save marker in
location 00F0H

END

An Introduction to 6502 Logical and Test Instructions
Microprocessor Applications Chapter 12

LJ Technical Systems 187

The Assembly Language program will be:

 ORG $0400 ;Defines the start address
0400 AD LDA $0500 ;Read contents of memory
0401 00 ;location 0500H
0402 05
0403 29 AND #$E0 ;Tests bits 5,6 and 7 of
0404 E0 ;the accumulator
0405 F0 BEQ NONE ;If none of the tested
0406 05 ;bits are set, branch to
 ;location 040CH
0407 A9 LDA #$C0
0408 C0
0409 85 STA $F0 ;One or more tested bits
040A F0 ;set, so save marker C0H
 ;in location 00F0H
040B 60 RTS ;Returns to MAC III system

040C A9 NONE: LDA #$03
040D 03
040E 85 STA $F0 ;No tested bits set, so
040F F0 ;save marker 03H in
 ;location 00F0H
0410 60 RTS ;Returns to MAC III system

The value with which location 0500H is ANDed is called the mask. In this case
the mask is E0H.

This program tests bits 5, 6 and 7 of location 0500H so any values above 1FH
should give a positive result. Conventionally, bits are numbered from 0 on the
right thus:

B7 B6 B5 B4 B3 B2 B1 B0

Bits Tested Bits Ignored

Logical and Test Instructions An Introduction to 6502
Chapter 12 Microprocessor Applications

188 LJ Technical Systems

 12.2a The 6502 instruction that can be used to test for several bits of a
 memory location set at the same time is:

a AND

b NOT

c ORA

d NOR

 12.2b Load the program for Worked Example 12.2 into the MAC III.
Place the value 16H in location 0500H. Run the program and then
examine the contents of location 00F0H. Enter the hexadecimal value
which you find.

 12.2c The program for Worked Example 12.2 is to be modified to test for
any of bits 2, 3 or 4 set in memory location 0500H. Enter the
required hexadecimal mask value.

An Introduction to 6502 Logical and Test Instructions
Microprocessor Applications Chapter 12

LJ Technical Systems 189

 12.3 Other Logical Instructions

6502 assembly language also allows the OR and Exclusive-OR (XOR) operators
to be applied to data. These are not so commonly used as the AND instructions.

 The BIT Instruction

This instruction is analogous to the COMPARE instruction. It logically ANDs the
contents of the accumulator with the contents of a specified memory location. The
flags are conditioned accordingly but the contents of the accumulator are
unaffected by this instruction.

For example:

0430 A9 LDA #$0F ;Loads accumulator with mask
0431 0F
0432 2C BIT $0500 ;ANDs location 0500H with 0FH
0433 00
0434 05
0435 60 RTS ;Returns to MAC III system

The Zero Flag is set or cleared according to the result of the logical AND.
However, the effect upon the N- and V-Flags is rather unusual: The N- and V-
Flags take on the states of bits 7 and 6 respectively within the memory location
which has been ANDed with the accumulator.

So, for the above example, suppose that location 0500H contains 5DH:

 5DH is ANDed with 0FH thus:

 5DH = 0101 11012
 •
 0FH = 0000 11112
 ————————
 0000 11012 = 0DH

This is a non-zero result so the zero flag will be clear.
The N- and V- flags follow bits 7 and 6 respectively of the value 5DH. Thus the
N-flag will be cleared and the V-flag set.

Logical and Test Instructions An Introduction to 6502
Chapter 12 Microprocessor Applications

190 LJ Technical Systems

 12.4 Worked Example

Modify the solution to Worked Example 12.2 to make use of the BIT instruction.

Yes

No

Load the accumulator
with a mask for bits

5, 6 or 7

START

Is the
Zero

Flag set

Bit with the
contents of

location 0500H

Load the accumulator
with marker for one of

the bits set

Load the accumulator
with marker for none

of the bits set

Save marker in
location 00F0H

END

An Introduction to 6502 Logical and Test Instructions
Microprocessor Applications Chapter 12

LJ Technical Systems 191

The assembly language program will be:

 ORG $0400 ;Defines the start address
0400 A9 LDA #$E0 ;Loads the accumulator
0401 E0 ;with a mask for bits 5,6
 ;and 7
0402 2C BIT $0500 ;ANDs contents of
0403 00 ;location 0500H with
0404 05 ;accumulator (but does
 ;not affect accumulator)
0405 F0 BEQ NONE ;If none of tested bits
0406 05 ;are set, branch to
 ;location 040CH
0407 A9 LDA #$C0
0408 C0
0409 85 STA $F0 ;One or more tested bits
040A F0 ;set, so save marker C0H
 ;in location 00F0H
040B 60 RTS ;Returns to MAC III system

040C A9 NONE: LDA #$03
040D 03
040E 85 STA $F0 ;No tested bits set, so
040F F0 ;save marker 03H in
 ;location 00F0H

0410 60 RTS ;Returns to MAC III system

 12.4a The Accumulator initially contains the value A6H. Enter the value
found in the Accumulator after the instruction "BIT $0500" has
been executed.

 12.4b The program for Worked Example 12.2 is to be modified to test for
any of bits 1, 2 or 3 set in memory location 0500H. The instruction
which must be changed is:

a LDA #$E0

b BIT $0500

c BEQ NONE

d LDA #$C0

Logical and Test Instructions An Introduction to 6502
Chapter 12 Microprocessor Applications

192 LJ Technical Systems

 12.5 Shift and Rotate Instructions

Shift Instructions

A logical shift involves each bit within a register moving one place to the left or
right (depending upon the direction of the shift). Usually a zero is shifted into the
register and the bit at the other end is lost.

For example: a register holding 1100 1010
2
:

A shift right would cause the register to be changed to 0110 0101
2
. Each bit

moves one place to the right and a zero moves into the most significant bit
position. There are two 6502 shift instructions. These both involve the Carry flag:

LSR: Shift right contents of the accumulator or a specified memory location.

0 01234567 C

A zero is shifted into the most significant bit position and the least significant bit
is shifted out into the carry flag.

For example:

0418 4E LSR $0500 ;Shifts the contents of
0419 00 ;location 0500H RIGHT once
041A 05

ASL: Shift left contents of the accumulator or a specified memory location.

01234567 0C

A zero is shifted into the least significant bit position and the most significant bit
is shifted out into the carry flag.

For example:

0437 06 ASL $E5 ;Shifts the contents of
0438 00 ;location 00E5H LEFT once

An Introduction to 6502 Logical and Test Instructions
Microprocessor Applications Chapter 12

LJ Technical Systems 193

 Rotate Instructions

These are similar to shift instructions, except that instead of one bit being lost and
a zero shifting in, the last bit is shifted back in at the beginning.

For example: a register holding 1100 10102:
A rotate left would cause the register to be changed to
1001 01012. Each bit moves one place to the left and the most significant bit
moves to the least significant position.

There are two 6502 rotate instructions. Like the shift instructions, these also
involve the Carry flag:

ROR: Rotate right contents of the accumulator or a memory location.

01234567 C

The least significant bit is shifted into the carry flag. The carry flag is also rotated
into the most significant position.

For example:

044D 6A ROR A ;Rotates the contents of
 ;the accumulator RIGHT
 ;once

ROL: Rotate left contents of the accumulator or a memory location.

01234567C

The most significant bit is shifted into the carry flag. The carry flag is also rotated
into the least significant position.

For example:

0473 3E ROL $0500,X ;Rotates the contents of
0474 00 ;location (0500H + X)
041A 05 ;LEFT once

Logical and Test Instructions An Introduction to 6502
Chapter 12 Microprocessor Applications

194 LJ Technical Systems

Shift and Rotate instructions can be used for generating sequences for
microprocessor control applications. They are also used in multiplication and
division algorithms, since shifting left by one place gives multiplication by 2 (in
the same way that adding a 0 to the right hand side of a denary number gives
multiplication by 10). Similarly, shifting right gives division by 2.

 12.5a A register contains the byte 9CH. Enter the hexadecimal contents of
this register after it has been shifted left 3 times.

 12.5b The 6502 instruction which will shift the contents of location 0524H
once to the right is:

a ASL #$0524

b ASL $0524

c LSR #$0524

d LSR $0524

 12.5c A register contains the byte 64H. If the Carry Flag is clear, enter the
hexadecimal contents of this register after it has been rotated

right 4 times.

 12.5d The 6502 instruction which will rotate the contents of the
Accumulator once to the left is:

a ASL A

b LSR A

c ROL A

d ROR A

An Introduction to 6502 Logical and Test Instructions
Microprocessor Applications Chapter 12

LJ Technical Systems 195

 12.6 Worked Example

Write a program that will multiply together the contents of locations 0500H and
0501H, saving the most significant byte of the result in location 00F0H and the
least significant byte in location 00F1H.

Note: The two largest possible 8-bit values (FFH and FFH) will give a result
FE01H. So, although the result may well exceed 8 bits, it cannot exceed
16 bits.

Initially set both most and
least significant bytes

to 00H

Set shift count to 08H

Shift the multiplier
right once

YesIs
the carry
flag clear

?
No

Add Multiplicand to
least significant byte

Save the new least
significant byte

Add multiplicand to the
most significant byte

Save the new most
significant byte

Shift the multiplicand
left once

Decrement the count

No Is
the count

=8?

Yes

END

START

Select binary
addition mode

Logical and Test Instructions An Introduction to 6502
Chapter 12 Microprocessor Applications

196 LJ Technical Systems

The Assembly Language program will be:

 ORG $0400 ;Defines the start address
0400 D8 CLD ;Selects binary addition mode
0401 A9 LDA #$00
0402 00
0403 85 STA $F0 ;Clears Most Significant
0404 F0 ;store
0405 85 STA $F1 ;Clears Least Significant
0406 F1 ;store
0407 85 STA $FF ;Clears Temporary Store
0408 FF
0409 A2 LDX #$08 ;Sets loop count to 8
040A 08

040B 4E LOOP: LSR $0501 ;Shifts multiplier right
040C 01 ;once
040D 05
040E 90 BCC CLEAR ;If carry is clear, no
040F 0E ;addition so branch over
 ;addition section
0410 18 CLC
0411 A5 LDA $F1 ;Reads the current least
0412 F1 ;significant byte
0413 6D ADC $0500 ;Adds multiplicand to
0414 00 ;least significant byte
0415 05
0416 85 STA $F1 ;Saves new least
0417 F1 ;significant byte
0418 A5 LDA $F0 ;Reads the current most
0419 F0 ;significant byte
041A 65 ADC $FF ;Adds multiplicand from
041B FF ;temporary store
041C 85 STA $F0 ;Saves new most
041D F0 ;significant byte

041E 0E CLEAR: ASL $0500 ;Shifts multiplicand left
041F 00 ;once
0420 05
0421 26 ROL $FF ;Rotates multiplicand
0422 FF ;left once
0423 CA DEX ;Reduces count by 1
0424 DO BNE LOOP ;Repeat from location
0425 E5 ;040AH until 8 shifts are
 ;completed
0426 60 RTS ;Returns to MAC III system

 12.6a Load the program for Worked Example 12.6 into the MAC III. Use
this program to calculate 6AH x 92H. Enter the hexadecimal result
that you obtain.

An Introduction to 6502 Logical and Test Instructions
Microprocessor Applications Chapter 12

LJ Technical Systems 197

 Student Assessment 12

1. When the binary number 1001 10012 is logically ANDed with the mask 1111 00002, the
 result is:

 a 0101 01112

 b 1000 10012

 c 1001 00002

 d 1111 10012

2. The mask required to test bits 6, 3 and 0 of the Accumulator is:

 a 24H

 b 49H

 c 57H

 d 92H

3. The Shift Right instruction (LSR) can be represented as:

 a

 b

 c

 d

Continued ...

01234567 C0

01234567 0C

01234567 C

01234567C

Logical and Test Instructions An Introduction to 6502
Chapter 12 Microprocessor Applications

198 LJ Technical Systems

Student Assessment 12 Continued …

4. The 6502 Assembly Language instruction that allows the Accumulator to be ANDed
 with a memory location but that does not change the contents of either is:

 a AND

 b BIT

 c LSR

 d ROL

5. Shifting a register one place to the left has the effect of:

 a addition of 2

 b subtraction of 2

 c multiplication by 2

 d division by 2

6. The Accumulator initially contains 34H. After the instruction "AND #$EB" has been
 executed, the contents of the Accumulator will be:

 a 10H

 b 20H

 c 40H

 d 80H

7. Initially, memory location 0600H contains the value 70H and the Accumulator contains
 2DH. After the instruction "BIT $0600" has been executed, the contents of the
 Accumulator will be:

 a 07H

 b 0EH

 c 20H

 d 2DH

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

Chapter 13 Input and Output Programming

LJ Technical Systems 199

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Describe the use of the LOAD and STORE
 instructions for data input and output respectively.

 Write programs which configure the 6522 VIA Data
 Ports as Inputs, Outputs or a mixture of both.

 Write programs which output and input data.

 Write programs to produce delays of given
 durations.

Equipment
Required for
this Chapter

 MAC III 6502 Microcomputer.
 Applications Module.
 Power supply.
 Keypad/display unit.
 Merlin Development System Software Pack, installed on a PC

 running Windows 95 or later.
 6502 Instruction Set Reference Manual.
 MAC III 6502 User Manual.

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

200 LJ Technical Systems

 Introduction
Data enters and leaves the microcomputer via Data Ports. A port usually
comprises 8 parallel connections to the external environment. These ports are
often within programmable devices that allow the user to specify any desired
combination of inputs or outputs. Ports may therefore be Output Ports, Input
Ports or a mixture of both.

The MAC microcomputer uses a 6522 VIA (Versatile Interface Adapter).

MAC III Board showing 6522

Similar devices are also called PIO (Parallel Input/Output) and PIA
(Programmable Interface Adapter). The 6522 has two 8-bit ports called Port A
and Port B. Both Ports can be configured under program control to provide any
desired combination of inputs and outputs.

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 201

 13.1 Input and Output Instructions

Ports A and B are "memory mapped". This essentially means that they appear to
be memory locations to the 6502. It follows therefore that the LOAD instruction
can be used to read data in from an input port and the STORE instruction to send
data out from an output port.

In the MAC III microcomputer, the addresses of the 6522 VIA registers that
allow data to be read from, or written to, the data ports are:

 Port A Data Register (PADR) 9001H
 Port B Data Register (PBDR) 9000H

Examples:

0456 8D STA PADR ;Outputs the accumulator
0457 01 ;contents at Port A
0458 90

So, if the accumulator contained 99H then the bit pattern 1001 10012 would
appear at Port A.

048C AD LDA PBDR ;Inputs the contents of
048D 00 ;Port B to the accumulator
048E 90

So, if the bit pattern 0001 01012 is presented at Port A, the accumulator will be
loaded with 15H.

Each of the Port bits is individually programmable as an input or an output bit,
using the Data Direction Register for Port A or Port B as appropriate.

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

202 LJ Technical Systems

Data Bus

Direction
Control

Data Direction
Register B

Data Direction
Register A

Port A

Port B

Direction
Control

Block diagram of 6522 Port Registers

The programming of the Data Direction Registers is quite simple: A "1" in any bit
position of the Data Direction Register makes the corresponding Port bit an
output.

For example, if Data Direction Register A holds the value 0011 01112:

 Bits 7, 6 and 3 of Port A are inputs
 Bits 5, 4, 2, 1 and 0 of Port A are outputs

In the MAC III microcomputer, the addresses of Port A and Port B Data
Direction Registers (PADDR & PBDDR) are:

 PADDR 9003H
 PBDDR 9002H

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 203

Clearly then, the LOAD instruction can also be used to program the Data
Direction Registers.

For example, to make Port A all output bits:

04A2 A9 LDA #$FF ;Loads accumulator with
04A3 FF ;1111 1111 binary 04A4 8D STA PADDR ;Saves required Input/Output
04A5 03 ;bit pattern in Port A Data Direction
04A6 90 ;Register

Similarly, to make Port B all input bits:

04D5 A9 LDA #$00 ;Loads accumulator with
04D6 00 ;0000 0000 binary 04D7 8D STA PBDDR ;Saves required Input/Output
04D8 02 ;bit pattern in Port B Data Direction
04D9 90 ;Register

Now recall that each bit of a Data Port is individually programmable as an input
or an output. So, for example, to make Port A bits 7, 6, 2 and 0 outputs and bits 5,
4, 3 and 1 inputs:

04F0 A9 LDA #$C5 ;Loads accumulator with
04F1 C5 ;1100 0101 binary 04F2 8D STA PADDR ;Saves required Input/Output
04F3 03 ;bit pattern in Port A Data Direction
04F4 90 ;Register

 13.1a The instruction that is used to output data from Port B of the
MAC III 6522 VIA is:

 a LDA PBDR

 b LDA PADR

 c STA PBDR

 d STA PADR

 13.1b All bits of Port A are to be programmed as inputs. Enter the
hexadecimal value that must be written to Port A Data Direction

Register.

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

204 LJ Technical Systems

 13.2 Worked Example

Write a program that will output the value 7EH from Port A.

Start

Configure
Port A

as an output
port

End

Output the
value 7EH
from Port A

The Assembly language program will be:

 PADR: EQU $9001
 PADDR: EQU $9003

 ORG $0400 ;Defines the start address
0400 A9 LDA #$FF ;Loads accumulator with
0401 FF ;1111 1111 binary
0402 8D STA PADDR ;Makes Port A all output bits
0403 03
0404 90
0405 A9 LDA #$7E ;Loads accumulator with
0406 7E ;7EH
0407 8D STA PADR ;Outputs accumulator contents
0408 01 ;at Port A
0409 90
040A 60 RTS ;Returns to MAC III system

Note that an assembly language 'EQU' directive is required by the 6502 Cross
Assembler, in order to define the address represented by each label used in the
program. If you are not using the 6502 Cross Assembler software, the EQU
statements may be ignored.

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 205

Make sure that you have connected the Applications Module to the MAC III
circuit board and to the power supply (refer to the MAC III User Manual for
further guidance).

Load the program into MAC III memory and execute. You should see the bit
pattern for 7EH (0111 11102) on the Applications Module, thus:

 D7 D6 D5 D4 D3 D2 D1 D0

 ❍ ❍

 LED lit

 ❍ LED unlit

 13.2a The program for Worked Example 13.2 is to be modified so that the
byte which is output at Port A is 28H. The instruction that must be
changed is:

a LDA #$FF

b STA PADDR

c LDA #$7E

d STA PADR

 13.3 Practical Assignment

Write a program that will add the contents of memory locations 0040H and 0041H. The result
should be output from Port A.

 13.3a Set the contents of memory location 0040H to 1BH and the contents
of location 0041H to 2FH. Run your program for Practical

Assignment 13.3 and enter the hexadecimal value output at Port A.

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

206 LJ Technical Systems

 13.4 Worked Example

Write a program that will use the Applications Module motor disc detector as the
input. If the input is a "1", output 07H from Port A. If the input is "0", output 70H
from Port A. This is a very important exercise, since it is the first time that you
will program the microcomputer to alter an output according to the state of an
input. This is the basis of many microcomputer control programs. If you now
rotate the motor disc on the applications module, you will see the Port B monitor
LED for bit 4 change. If the LED is lit, a "1" is present. If the LED is unlit, a "0"
is present. This can be used as the input for this exercise.

You will send an output marker value to Port A depending upon the state of this
input. This program should loop back to keep checking the input and change the
output as required. This is a fundamental process in continuous microcomputer
control.

START

Configure Port A as
an output port

YesIs
Bit 4 set

?

No

Output the Marker
from Port A

Configure Port B as
an input port

Test bit 4 of port B

Load accumulator with
Marker for Input = 0

Load accumulator with
Marker for Input = 1

Notice how the program loops back. This will give a continuous loop. The output
will change whenever the input changes.

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 207

The Assembly language program will be:

 PADR: EQU $9001
 PADDR: EQU $9003
 PBDR: EQU $9000
 PBDDR: EQU $9002

 ORG $0400 ;Defines the start address
0400 A9 LDA #$FF ;Loads accumulator
0401 FF ;with 1111 1111 binary
0402 8D STA PADDR ;Makes Port A all
0403 03 ;output bits
0404 90
0405 A9 LDA #$00 ;Loads accumulator
0406 00 ;with 0000 0000 binary
0407 8D STA PBDDR ;Makes Port B all
0408 02 ;output bits
0409 90
040A A9 TESTB4: LDA #$10 ;Loads accumulator
040B 10 ;with mask for bit 4
040C 2C BIT PBDR ;Tests bit 4 of
040D 00 ;Port B
040E 90
040F D0 BNE B4SET ;Is bit 4 set ?
0410 08
0411 A9 LDA #$70
0412 70
0413 8D STA PADR ;Bit 4 not set so
0414 01 ;output 70H at
0415 90 ;Port A
0416 4C JMP TESTB4 ;Loop back to test
0417 0A ;bit 4 again
0418 04
0419 A9 B4SET: LDA #$07
041A 07
041B 8D STA PADR ;Bit 4 set so output
041C 01 ;07H at Port A
041D 90
041E 4C JMP TESTB4 ;Loop back to test
041F 0A ;bit 4 again
0420 04

Load this program into the MAC III and execute.

Rotate the motor disc and the input will switch between "1" and "0" (LED "on"
and" off"). Check that the output LED’s change between 07H and 70H as the
input changes.

Note: Since this program contains a continuous loop, you will have to press the

RESET button on the MAC III board to return control to the
MAC III system.

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

208 LJ Technical Systems

 13.4a In the program for Worked Example 13.4, if the instruction
" BNE B4SET " is changed to "BEQ B4SET", the program

would:

a work in exactly the same way

b always output 07H

c always output 70H

d output 07H when the input is a '0' and 70H when the input is a '1'

 13.5 Time Delays

Often in Input/Output programs it will be necessary to provide a time delay. For
example: to allow a peripheral device time to respond.

There are a number of ways of producing such delays. The simplest is to load a
register or memory location with a value and then continually decrement the
register or location until it reaches zero.

For example, using an Index Register:

0420 A2 LDX #$60 ;Loads X-register with a count
0421 60
0422 CA LOOP: DEX ;Reduce count by 01H
0423 D0 BNE LOOP ;If count is not yet zero,
0424 FD ;branch back to previous
 ;instruction
0425 60 RTS ;Returns to MAC III system

Alternatively, using a memory location:

0430 A9 LDA #$80
0431 80
0432 85 STA $F0 ;Places count value in
0433 F0 ;location 00F0H
0434 C6 LOOP: DEC $F0 ;Reduce count by 01H
0435 F0
0436 D0 BNE LOOP ;If count is not yet zero,
0437 FC ;branch back to previous
 ;instruction
0438 60 RTS ;Returns to MAC III system

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 209

Now, the length of time delay produced will depend upon the initial value of the
count. It will also depend upon the time each instruction within the loop takes to
execute.

These times are given in the 6502 Instruction Set Reference Manual - the 6502
Instruction Set. Notice that times are expressed in terms of clock cycles, rather
than in microseconds. This is to cater for a variety of clock frequencies.

The cycle time is related to the clock frequency thus:

 Cycle Time =
1

Clock Frequency

The MAC III microcomputer has a 1 MHz clock, giving a time for each cycle of
1µs. Consider the time delay example at the beginning of this section:

0420 A2 LDX #$60 ;Loads X-register with a count
0421 60
0422 CA LOOP: DEX ;Reduce count by 01H
0423 D0 BNE LOOP ;If count is not yet zero,
0424 FD ;branch back to previous
 ;instruction
0425 60 RTS ;Returns to MAC III system

Now, the time taken to execute the first instruction (LDX) will be very small in
comparison with the program loop and can almost always be ignored. From the
6502 Instruction Set Reference Manual you will see that " DEX " will have an
execution time of 2 cycles and "BNE LOOP" has an execution time of 2 + 1 = 3
cycles (whenever the branch is taken - which will be every pass except the last).

Therefore each pass through the loop will take:

 2 + 3 = 5 cycles.

Recall that each cycle is 1µS so each pass through the loop will take:

 5 x 1 = 5µs.

Now, the count is initially set to 60H which is 9610. Hence the total delay will be:
 96 x 5 = 480µs (0.48ms)

The maximum possible value for the initial count is FFH (25510). So the
maximum possible delay using this structure is:

 255 x 5 = 1275µs (1.275ms)

This technique can be extended to produce longer delays by nesting a second
loop with the first.

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

210 LJ Technical Systems

So, for example:

0400 A2 LDX CNT1 ;Loads X-register
0401 60 ;with first count
0402 A0 LDY CNT2 ;Loads Y-register
0403 FF ;with second count

0404 88 DCNT: DEY ;Reduce first count by 01H
0405 D0 BNE DCNT ;If first count is not yet zero,
0406 FD ;branch back to decrement first
 ;count again
0407 DEX ;Reduce second count by 01H
0408 D0 BNE DCNT ;If second count is not yet
0409 FA ;zero, branch back to decrement
 ;first count again
040A 60 RTS ;Returns to MAC III system

The action of this delay technique can be likened to a clock: The Y register
represents seconds and the X register minutes. The least significant loop (based
on the Y-Register) will produce a delay of:

 255 x 5 = 1275µs (1.275ms)

The most significant loop (based on the X-Register) will, in this case, be executed
60H (9610) times. So the total delay will be:

 96 x 1.275 = 122.4ms (0.1224s)

Note that the maximum delay which may be produced will be:

 255 x 1.275 = 325.125ms (0.325125s)

 The NOP Instruction

Using the dummy instruction NOP (No Operation) can produce very short delays.
This instruction performs no function other than incrementing the program
counter. The NOP instruction will produce a delay of 2 cycles (2µs for the
MAC III system).

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 211

 13.6 Worked Example

Write a program section that gives a delay of 1ms

Solution:

1ms = 1000µs

Time taken for one pass through simple loop = 5µs

 1000µs = 20010
 5µs

So 20010 (C8H) is the value to be loaded into the register.

The program section will be:

0400 A2 LDX #$C8 ;Loads X-register with a count
0401 C8
0402 CA LOOP: DEX ;Reduce count by 01H
0403 D0 BNE LOOP ;If count is not yet zero,
0404 FD ;branch back to previous instruction
0405 60 RTS ;Returns to MAC III system

 13.6a The program for Worked Example 13.6 is to be modified to produce
a delay of 800µs. Enter the hexadecimal value that the first

instruction must load into the X Register.

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

212 LJ Technical Systems

 13.7 Worked Example

Write a program section that gives a delay of 5ms

Solution:

5ms = 5000µs

Time taken for one pass through simple loop = 5µs

Maximum delay for a simple loop = 255 x 5 = 1275µs so nested loops must be
used.

The first loop will give a delay of 1275µs so:

 5000µs = 3.921610
 1275µs

Now, since this is not a round number it must be rounded up to the nearest whole
number: 410

Therefore 04H is the value to be loaded into the X-Register.

The program section will be:

0400 A2 LDX #$04 ;Loads X-register
0401 04 ;with first count
0402 A0 LDY #$FF ;Loads Y-register
0403 FF ;with second count
0404 88 DCNT: DEY ;Reduce first count by 01H
0405 D0 BNE DCNT ;If first count is
0406 FD ;not yet zero, branch back to
 ;decrement first count again
0407 DEX ;Reduce second count by 01H
0408 D0 BNE DCNT ;If second count is not yet
0409 FA ;zero, branch back to decrement
 ;first count again
040A 60 RTS ;Returns to MAC III system

 13.7a The program for Worked Example 13.7 is to be modified to produce
a delay of 15.3ms. Enter the hexadecimal value that the first

instruction must load into the X Register.

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 213

 13.8 Worked Example

Write a program that will produce an increasing binary count which changes
about once per second.

This problem requires a delay of about 1 second between increments of Port A:

Configure port A
as an output

port

Increment Port A

Clear Port A

Delay of 1 second

START

The maximum delay for a single nested loop is about 325ms. However, the least
significant loop could be made longer by including several NOP instructions thus:

0500 A2 LDX #$FF
0501 FF
0502 CA LOOP: DEX
0503 EA NOP
0504 EA NOP
0505 EA NOP
0506 EA NOP
0507 EA NOP
0508 D0 BNE LOOP
0509 F8

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

214 LJ Technical Systems

Each pass through this loop would give a delay of:

 2 + 2 + 2 + 2 + 2 + 2 + 3 = 15 cycles = 15µs

The maximum delay which this loop could produce will be:

 255 x 15 = 3825µs (3.825 ms)

If this is nested with another loop, the maximum overall delay will be:

 255 x 3825 = 975375µs (0.98 s)

This is a quite acceptable approximation to the 1 second delay required.

So, the Assembly Language program will be:

 PADR: EQU $9001
 PADDR: EQU $9003

 ORG $0400 ;Defines the start address
0400 A9 LDA #$FF
0401 FF
0402 8D STA PADDR ;Makes Port A all output
0403 03 ;bits
0404 90
0405 A9 LDA #$00
0406 00
0407 8D STA PADR ;Clears Port A initially
0408 01
0409 90
040A EE INCNT: INC PADR ;Increase count by 1
040B 01
040C 90
040D A2 LDX #$FF
040E FF
040F A0 LDY #$FF ;Initial values for delay
0410 FF
0411 CA DCNT: DEX
0412 EA NOP
0413 EA NOP
0414 EA NOP
0415 EA NOP
0416 EA NOP
0417 DO BNE DCNT ;Least significant delay
0418 F8 ;loop - 3.825 ms
0419 88 DEY
041A D0 BNE DCNT ;Most significant delay
041B F5 ;loop - 0.975 s
041C 4C JMP INCNT ;Loop back to next
041D 0A ;increment of Port A
041E 04

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 215

 13.8a Enter the delay in microseconds (µs) produced by a single "NOP"
instruction.

 13.9 Practical Assignment

Write a program that will output a binary up-count, increasing by one about every 0.5 seconds at
Port A. The Applications Module motor disc detector is to be used as an input. If the input is a
"0", the binary count may continue. If the input is "1", the binary count should be suspended.

 13.9a Load your program for Practical Assignment 13.9 into the MAC III.
Set the input to a logic "1" and run the program. Now set the input
to logic "0" for 20 seconds and return it to logic "1". Enter the

hexadecimal byte shown on the Port A monitor LED’s.

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

216 LJ Technical Systems

 Student Assessment 13

1. Data enters and leaves the microcomputer by means of:

 a a Data Direction Register

 b a Data Port

 c an Index Register

 d the Status Register

2. The 6502 Assembly Language instruction that will read the data input at Port B is:

 a INPUT

 b LOAD

 c READ

 d STORE

3. The 6502 Assembly Language instruction "STA $9001" will:

 a copy the value input at Port A into the Accumulator

 b copy the value input at Port B into the Accumulator

 c output the contents of the Accumulator at Port A

 d output the contents of the Accumulator at Port B

4. The bits of a 6522-VIA Port that are to be inputs have a logic 0 written into the:

 a data input register

 b data output register

 c data direction register

 d data port register

An Introduction to 6502 Input and Output Programming
Microprocessor Applications Chapter 13

LJ Technical Systems 217

Student Assessment 13 Continued …

5. The correct assembly language sequence required to output the value D5H from Port A
 on the MAC III is:
 a LDA #$FF
 STA PADDR
 LDA #$D5
 STA PADR

 b LDA #$00
 STA PADDR
 LDA #$D5
 STA PADR

 c LDA #$D5
 STA PADDR
 LDA #$00
 STA PADR

 d LDA #$D5
 STA PADDR
 LDA #$FF
 STA PADR

6. The 6502 Assembly Language instruction sequence:

 LDA #$0F
 STA $9002

 will configure Port B:

 a as all inputs

 b as all outputs

 c bits 0, 1, 2 and 3 as inputs and bits 4, 5, 6 and 7 as outputs

 d bits 0, 1, 2 and 3 as outputs and bits 4, 5, 6 and 7 as inputs

Continued ...

Input and Output Programming An Introduction to 6502
Chapter 13 Microprocessor Applications

218 LJ Technical Systems

Student Assessment 13 Continued …

7. The time taken by the MAC III to execute a "DEX" instruction is:

 a 1 µs

 b 2 µs

 c 3 µs

 d 4 µs

8. The delay produced in the MAC III by the 6502 assembly Language program:

 0400 A2 LDX #$20
 0401 20
 0402 CA LOOP: DEX
 0403 D0 BNE LOOP
 0404 FD
 0405 60 RTS

 will be:

 a 160 µs

 b 180 µs

 c 240 µs

 d 360 µs

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

Chapter 14 Programming the Applications Module

LJ Technical Systems 219

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Describe the operation of each section of the
Applications Module:

 Piezo Sounder
 Ultrasonic Transmitter and Receiver
 Digital to Analog Converter
 Analog to Digital Converter
 Optical Sender and Receiver
 Optical Disc Encoder

 Write programs to control each section of the
Applications Module.

Equipment
Required for
this Chapter

 MAC III 6502 Microcomputer.
 Applications Module.
 Power supply.
 Keypad/display unit.
 Merlin Development System Software Pack, installed on a PC

running Windows 95 or later.
 MAC III 6502 User Manual.

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

220 LJ Technical Systems

Introduction

In the first chapter in this manual you learned how to run demonstration programs
to control each section of the Applications Module. In other chapters you have
learned how to program the microcomputer to make decisions and how to input
and output data.

In this chapter you will combine these skills and write programs to control each
individual section of the Applications Module.

Piezo
Sounder

Ultrasonic
Receiver

Ultrasonic
Transmitter

PZO

URX

UTX

Analog
to Digital
Converter

Digital
to Analog
Converter

Optical disc
encoder

WR
BSY
RD

PORT A

PB0EN

DSC PB4

Optical
Sender

Optical
Receiver

Potentiometer
PB1
PB2
PB3

PB6

PB7

PB5

Applications Module Block Diagram

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 221

 14.1 Piezo Sounder

PIEZO SOUNDER

PZO

The piezo sounder converts a TTL level waveform on Port B, bit 5 (PB5) into an
audio signal of the same frequency. Changing the logic level on PB5 with respect
to time will generate a TTL waveform thus:

1 0 1 1 1 1 0 0 0

 14.2 Worked Example

Write a program that will sound the Piezo Sounder at 1kHz.

Solution

This problem requires a square wave to be output to Port B, bit 5 (PB5). This is
achieved by alternating the output between 0 and 1. Such a solution will, however
not produce an audible output. It is necessary therefore to introduce a delay
between changes of the output. For example, to produce a sound at 1kHz:

 Period =
1

Frequency =
1

1000 = 1ms

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

222 LJ Technical Systems

Now, the output must change twice during the period thus:

1 0 1 0 0

1ms

500µs 500µs

So a delay of 500µs will be required. The simple delay loop produces a delay of
5µs for each pass, so the number of passes required is:

 500µs = 10010 (64H)
 5µs

Flowchart

START

Output a "1"
from PB5

Configure PB5
as an output

bit

Output a "1"
from PB5

Time Delay of 500µs

Output a "0"
from PB5

Time Delay of 500µs

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 223

The Assembly Language Program will be:

 PBDR: EQU $9000
 PBDDR: EQU $9002

 ORG $0400 ;Defines the start address
0400 A9 LDA #$20
0401 20
0402 8D STA PBDDR ;Makes Port B bit 5 (PB5)
0403 02 ;an output bit
0404 90
0405 A9 HIOUT: LDA #$20
0406 20
0407 8D STA PBDR ;Outputs a "1" on PB5
0408 00
0409 90
040A A2 LDX #$64 ;Loads count for delay
040B 64
040C CA DELAY1: DEX
040D D0 BNE DELAY1 ;Delay of 500us
040E FD
040F A9 LDA #$00
0410 00
0411 8D LOWOUT: STA PBDR ;Outputs a "0" on PB5
0412 00
0413 90
0414 A2 LDX #$64 ;Loads count for delay
0415 64
0416 CA DELAY2: DEX
0417 D0 BNE DELAY2 ;Another delay of 500us
0418 FD
0419 4C JMP HIOUT ;Loop back to output a
041A 05 ;"1" on PB5
041B 04

 14.2a In Worked Example 14.2, the effect of reducing the delay between
each change of the output state to 100µs will change the frequency of
the sound emitted to:

a 5kHz

 b 10kHz

 c 50kHz

 d 100kHz

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

224 LJ Technical Systems

 14.3 Ultrasonic Transmitter and Receiver

ULTRASONIC MODULE

UTX URX

NE555 FREQ

TL074

LM311

1

2

GAIN

The Ultrasonic Transmitter is driven by a 40kHz oscillator within the Ultrasonic
Module. The transmitter is switched on/off by the state of PB6 (labeled UTX):

 PB6 = 1 Transmitter ON
 PB6 = 0 Transmitter OFF

The Ultrasonic Receiver will detect the 40kHz ultrasound signal and pass an
indication to PB7 (labeled URX) thus:

 No 40kHz Detected: PB7 = 1
 40kHz Detected: PB7 = 40kHz TTL Squarewave

The Transmitter and Receiver can be used together to detect reflections from an
object placed directly above the module.

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 225

The sensitivity of the receiver circuit is set by the Gain control potentiometer.
This allows the threshold at which signals are detected to be varied.

The Module can be used as a Proximity detector by generating an ultrasound
signal and then monitoring the output from the receiver.

If any 40kHz signals appear on URX (PB7) then an object must be reflecting the
ultrasound transmission.

The Applications Module User Manual also describes how to use this module for
measuring distance. Recall that this was one of the demonstration programs.

 14.3a The Ultrasonic Transmitter is switched on by applying a:
 a logic "0" at PB6

 b logic "1" at PB6

 c logic "0" at PB7

 d logic "1" at PB7

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

226 LJ Technical Systems

 14.4 Worked Example

Write a program that will use the Ultrasonic Units within the Applications Module
to act as a proximity detector. When an object is placed directly above the
Ultrasonic Unit, all of the Port A monitor LED’s should be lit.

Solution

No

Yes

Output a "1" on
PB6 to switch
on ultrasound
transmission

Test PB7

Output 00H from
Port A

Configure port B
with PB7 as I/P

PB6 as O/P

Is PB7 =0
?

Configure port A
as an output

port

START

Output FFH from
Port A

Wait for 1ms

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 227

The Assembly Language Program will be:

 PADR: EQU $9001
 PADDR: EQU $9003
 PBDR: EQU $9000
 PBDDR: EQU $9002

 ORG $0400 ;Defines the start address
0400 A9 LDA #$FF
0401 FF
0402 8D STA PADDR ;Sets Port A to all
0403 03 ;Output Bits
0404 90
0405 A9 LDA #$40
0406 40
0407 8D STA PBDDR ;Sets Port B: PB7=I/P,
0408 02 ;PB6=O/P, other bits
0409 90 ;don't care
040A A9 LDA #$40
040B 40
040C 8D STA PBDR ;Outputs a "1" on PB6 to
040D 00 ;switch on Ultrasonic
040E 90 ;Transmitter
040F A9 TSTPB7: LDA #$80 ;Mask for Bit 7
0410 80
0411 2C BIT PBDR ;Test PB7
0412 00
0413 90
0414 F0 BEQ LEDON ;If PB7=0, branch to
0415 08 ;light LED’s section
0416 A9 LDA #$00
0417 00
0418 8D STA PADR ;PB7=1 so switch off LED’s
0419 01
041A 90
041B 4C JMP TSTPB7 ;Jump back to test PB7
041C 0F ;again
041D 04
041E A9 LEDON: LDA #$FF
041F FF
0420 8D STA PADR ;PB7=0 so switch on LED’s
0421 01
0422 90
0423 A2 LDX #$C8 ;Sets initial value for
0424 C8 ;delay counter
0425 CA WAIT: DEX
0426 D0 BNE WAIT ;Wait with Leeds on for about
0427 FD ;1ms
0428 4C JMP TSTPB7
0429 0F
042A 04

Load the program into the MAC III and execute.

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

228 LJ Technical Systems

Note: You will need to adjust the GAIN control in the Ultrasonic Module block
to avoid false triggering.

This program could form the basis of an intruder alarm or automatic counter. Note
the delay of approximately 1ms after the Port A LED’s are lit - this delay ensures
that the LED’s are not switched off again when the detected 40kHz square wave
next goes high.

 14.4a In Worked Example 14.4, the effect of changing the second
"LDA #$40" instruction to "LDA #$00" would be to:

 a disable the Ultrasonic Transmitter

 b enable the Ultrasonic Transmitter

 c disable the Ultrasonic Receiver

d enable the Ultrasonic Receiver

 14.5 Practical Assignment

Write a program that uses the Ultrasonic Units within the Applications Module to act as a
proximity detector. When an object is placed directly above the Ultrasonic Unit, the Piezo Sounder
should be activated.

 14.5a Run your program for Practical Assignment 14.5. The status of the
"PZO" and "URX" LED’s when the alarm is sounding are:

 a PZO LED off and URX LED off

 b PZO LED off and URX LED on

 c PZO LED on and URX LED off

 d PZO LED on and URX LED on

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 229

 14.5b In your program for Practical Assignment 14.5, the data bits that
were written to bit positions 7, 6 and 5 respectively of Data Direction
Register B were:

 a 0, 0, 0

 b 0, 1, 0

 c 0, 1, 1

 d 1, 0, 0

 14.6 Digital to Analog Converter

7

TL071

VOUT

ZN428

DIGITAL/ANALOG
CONVERTER

A Digital to Analog Converter (DAC) is necessary if a microprocessor-based
control system is to produce an analog output. A DAC takes a digital value and
represents it as a voltage level.

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

230 LJ Technical Systems

The Applications Module DAC has an 8-bit input. The output can range from 0V
to 2.55V thus:

2.55

2.00

1.0

0
40H 80H C0H FFH

Output Voltage
(V)

Input Code
(Hex)

Notice that there are FFH = 25510 steps between 0V and 2.55V, so each increase in
1H gives a voltage rise 0.01V (10mV).

The upper slider switch (DAC switch) on the Applications Module allows the
output of the DAC to be applied to either the Optical Sender or the DC Motor:

DSC

.
3

.

MOTOR MODULE

LOAD
0V

4

OPTICAL SENDER

TLO71

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 231

The following sequence is required to initiate digital to analog conversion:

 1. Output "0" on Port B, bit 0 (PB0) to enable the DAC

 2. Output digital data from Port A

The voltage at the output will then be directly proportional to the input binary
code.

 14.6a If an input code of 64H is applied to the Applications Module Digital
to Analog Converter (DAC), enter the output voltage (in volts).

Note: If PB0 is returned to logic "1" while the digital data is present at Port A,

this data will become "latched" inside the DAC. The DAC output voltage
will then remain held at a voltage proportional to the "latched" data, even
if the data at Port A is subsequently changed.

 In order for the DAC output to respond to new data at Port A, PB0 must
be taken to logic "0" again.

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

232 LJ Technical Systems

 14.7 Worked Example

Write a program that will produce a slowly increasing binary count output
(changing about every 0.5 seconds) at Port A which is passed, via the DAC to
either the Optical Sender or the DC Motor.

Solution

START

Configure
Port A as an
output port

Output a "0"
on PB0 to

enable DAC

Output 00H to
port A

Configure Bit 0
of Port B (PB0)
as an output

Wait for about
0.5 sec

Increment the
value at Port A

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 233

The Assembly Language Program will be:

 PADR: EQU $9001
 PADDR: EQU $9003
 PBDR: EQU $9000
 PBDDR: EQU $9002

 ORG $0400 ;Defines the start address
0400 A9 LDA #$FF
0401 FF
0402 8D STA PADDR ;Configures Port A as an
0403 03 ;output port
0404 90
0405 A9 LDA #$01
0406 01
0407 8D STA PBDDR ;Configures PB0 as an
0408 02 ;output bit
0409 90
040A A9 LDA #$00
040B 00
040C 8D STA PBDR ;Outputs a "0" on PB0 to
040D 00 ;enable DAC
040E 90
040F A9 LDA #$00
0410 00
0411 8D STA PADR ;Sets Port A to 00H
0412 01 ;initially
0413 90
0414 A2 COUNTS: LDX #$FF
0415 FF
0416 A0 LDY #$FF ;Sets count values for
0417 FF ;0.5s delay
0418 CA DELAY: DEX
0419 EA NOP
041A D0 BNE DELAY ;Decrement X-register
041B FD ;until zero
041C 88 DEY
041D D0 BNE DELAY ;Decrement Y-register
041E FA ;until zero to give a
 ;delay of 0.5s
041F EE INC PADR ;Increment the value
0420 01 ;output at Port A
0421 90
0422 4C JMP COUNTS ;Loop back to load delay
0423 14 ;count values again
0424 04

Ensure that the upper slider switch on the Applications Module is set to its upper
position, so that the DC Motor Module is connected to the DAC. Set the motor
LOAD control on the Applications Module to the fully counter-clockwise
(minimum load) position.

Load the above program into MAC III memory and execute.

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

234 LJ Technical Systems

Notice how a significant count is required before the motor begins to rotate. Do
not be tempted to rotate the disk yourself to start the motor, it will start by itself.

This technique can be used, for example, to slowly run a DC Motor up to its
operating speed.

 14.7a Run the above program again and note the hexadecimal count at the
monitor LED’s when the motor just starts to rotate. Enter this
hexadecimal byte.

 14.8 Analog to Digital Converter

ZN488

8 VIN

ANALOG/DIGITAL
CONVERTER

An Analog to Digital Converter (ADC) is required where external analog inputs
are to be applied to a digital system, for example a microcomputer. The ADC takes
an input voltage and represents it as a binary value.

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 235

The Applications Module ADC has an 8-bit output connected to Port A and three
control signals, connected to Port B thus:

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

PB3
RD

PB2
BSY

PB1
WR

Analog
Input

Digital
Output

Analog to
Digital

Converter

The input range is from 0V to 2.55V, like the DAC, so each step represents 10mV.
The following sequence is required to perform conversion:

1. Output "1" on Port B, bits 1 and 3 (PB1 and PB3) initially.

2. Output a short negative-going pulse on Port B, bit 1 (PB1) to initiate
conversion. This can be done by causing an output bit to change from 1 to 0
and back to 1 again.

3. Monitor Port B bit 2 (PB2) and wait for PB2=1 indicating that conversion is
complete.

4. Output a "0" on Port B bit 3 (PB3) to enable ADC outputs.

5. Read the digital data on Port A.

6. Output a "1" on Port B bit 3 (PB3) to disable ADC outputs.

The value at Port A will now be directly proportional to the input voltage.

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

236 LJ Technical Systems

The ADC can be connected to either the Potentiometer or the Optical Receiver by
means of the lower slider switch (ADC switch):

POTENTIOMETER
VREF

6
5

0V0V

OPTICAL RECEIVER

0V

 14.8a If an input voltage of 1.5V is applied to the Applications Module
Analog to Digital Converter (ADC), enter the output hexadecimal
byte.

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 237

 14.9 Worked Example

Write a program which will output a binary value at Port A, dependent upon the
setting of the Potentiometer.

Solution

Configure Port A
as an input port

Output a "1" on
PB3 and PB1 to
initialize ADC

Output short negative
pulse on PB1 to start

conversion

Output potentiometer
value

Start

Wait for PB2 to
become a Logic 1,

indicating
conversion completed

Reconfigure port A
as an output port so
potentiometer value

can be displayed

Read port A and
save in X register

Configure
Port B with
PB3 as 0/P
PB2 as I/P
PB1 as 0/P

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

238 LJ Technical Systems

The Assembly Language program will be:

 PADDR: EQU $9003
 PADR: EQU $9001
 PBDDR: EQU $9002
 PBDR: EQU $9000

 ORG $0400 ;Defines the start address
0400 A9 START: LDA #$0A
0401 0A
0402 8D STA PBDDR ;Configures Port B as
0403 02 ;PB3=O/P, PB2=I/P AND PB1=O/P
0404 90
0405 A9 LOOP: LDA #$0A
0406 0A
0407 8D STA PBDR ;Outputs a "1" on PB3 and PB1 to
0408 00 ;initialize ADC
0409 90
040A A9 LDA #$00
040B 00
040C 8D STA PADDR ;Configures all of Port A as inputs
040D 03
040E 90
040F A9 LDA #$08
0410 08
0411 8D STA PBDR ;Outputs a "0" on PB1
0412 00
0413 90
0414 A9 LDA #$0A
0415 0A
0416 8D STA PBDR ;Outputs a "1" on PB1 to generate a
0417 00 ;short negative-going pulse on PB1
0418 90
0419 A9 LDA #$04
041A 04
041B 2C TSTB2: BIT PBDR ;Tests PB2 for logic 1
041C 00
041D 90
041E F0 BEQ TSTB2 ;Repeat test of PB2 if not true
041F FB
0420 A9 LDA #$02
0421 02
0422 8D STA PBDR ;PB2=1 so output a "0" on PB3
0423 00 ;to enable ADC output
0424 90
0425 AD LDA PADR ;Reads potentiometer input at Port A
0426 01
0427 90

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 239

Program continued:

0428 AA TAX ;Saves input value in the X-Register
0429 A9 LDA #$FF
042A FF
042B 8D STA PADDR ;Reconfigures Port A as all outputs
042C 03
042D 90
042E 8E STX PADR ;Outputs potentiometer value at Port A
042F 01
0430 90
0431 A0 LDY #$08 ;Loads X and Y registers with delay values
0432 08
0433 A2 LDX #$FF
0434 FF
0435 CA DELAY: DEX
0436 D0 BNE DELAY
0437 FD
0438 88 DEY ;Waits for about 10ms to allow output to
0439 D0 BNE DELAY ;be displayed much more often than input
043A FA
043B 4C JMP LOOP ;Loop back
043C 05
043D 04

Load this program into MAC III memory and execute. Observe the effect of
changing the Potentiometer setting.

This program can also act as an ambient light level indicator if the lower slider
switch is moved to the upper position. The LED’s now give an indication of the
intensity of light falling on the Optical Receiver.

 14.9a Part of the program in Worked Example 14.9 generates a short
negative going pulse on PB1. The purpose of this section of the

program is to:

a initiate Analog to Digital Conversion

b enable the DAC

c disable the ADC outputs

d test the BSY signal line

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

240 LJ Technical Systems

 14.10 Optical Sender and Optical Receiver

The Optical Sender and Optical Receiver units can be used in isolation, as LED
and Light Detector respectively, or used together to form an Optical Link.

The output of the DAC can be switched to the Optical Sender by setting the upper
slider switch to the lower position. The brightness of this LED then varies
according to the code at the input to the DAC.

The Optical Receiver output can be switched to the input of the ADC by setting
the lower slider switch to the upper position. The intensity of light falling on the
Receiver can thus be converted into a binary value. The light intensity will depend
upon the ambient lighting conditions and upon any light output from the Optical
Sender unit.

 14.11 Practical Assignment

Write a program which will sound the Piezo Sounder whenever the optical link between Optical
Sender and Receiver is broken.

Note: It can be assumed that if the optical link is unbroken, the ADC output will be greater
 than 15H. When the link is broken, the ADC output will fall below 15H.

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 241

 14.11a In your solution to Practical Assignment 14.11, which bit position of
 Data Direction Register B was written with a logic "0"?

 a Bit 5

 b Bit 3

 c Bit 0

 d Bit 2

14.12 Optical Disc Encoder

The motor disc passes between an optical transmitter and receiver. There are two
holes in the disc, each one producing a short pulse as the shaft rotates. Clearly, the
number of pulses per second is a measure of the speed of rotation of the motor
shaft.

Phototransistor

Infra-red
LED

Slotted disk

DSC
Output

1
0

1 revolution

 14.13 Practical Assignment

Write a program that will allow the speed of the DC Motor to be varied according to the setting of
the Potentiometer.

 14.13a Run your program for Practical Assignment 14.13. Set the
potentiometer to a point midway between the maximum and
minimum settings. Enter the hexadecimal byte output at Port A.

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

242 LJ Technical Systems

 Student Assessment 14

1. For the Piezo Sounder to produce an audio frequency, a TTL signal must be applied to:
 a Port B, bit 5

 b Port B, bit 6

 c Port A, bit 5

 d Port A, bit 6

2. The Ultrasonic Transmitter is switched on/off by the state of:
 a Port B, bit 5

 b Port B, bit 6

 c Port A, bit 5

 d Port A, bit 6

3. When the Ultrasonic Receiver detects a 40kHz ultrasound signal:
 a PB6 is set to logic 1

 b PB6 is set to logic 0

 c PB7 is set to logic 1

 d PB7 has a 40kHz squarewave

4. The section of the Applications Module that allows the microprocessor to produce an
 Analog output is the:
 a ADC

 b DAC

 c Optical Disc Encoder

 d Potentiometer

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 243

 Student Assessment 14 Continued …

5. An increase of 01H at the input of the Applications Module DAC produces a rise in
 output voltage of:
 a 1mV

 b 10mV

 c 25.5mV

 d 255mV

6. The section of the Applications Module that allows the microprocessor to read an
 Analog input is the:

 a ADC

 b DAC

 c Optical Disc Encoder

 d Piezo Sounder

7. The signal from the Applications Module ADC which indicates that conversion is
 complete is:

 a RD

 b WR

 c BSY

 d EN

8. The Applications Module units that could be used to form an ambient light measuring
 system are the:

 a Optical Sender and the ADC

 b Optical Sender and the DAC

 c Optical Receiver and the ADC

 d Optical Receiver and the DAC

Continued ...

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

244 LJ Technical Systems

Student Assessment 14 Continued …

9. The number of pulses per revolution produced by the Applications Module Optical Disc
 Encoder is:

 a 0.5

 b 1

 c 2

 d 4

10. The effect of applying alternate logic '1' and logic '0' repeatedly at Port B, bit 5, with a
 delay of 0.1ms between each change, would be an output of:

 a 5 kHz at the Piezo Sounder

 b 10 kHz at the Piezo Sounder

 c 40 kHz at the Ultrasonic Transmitter

 d 80 kHz at the Ultrasonic Transmitter

11. The effect on the Applications Module of the program section:

 LDA #$40
 STA PBDDR
 STA PBDR

 would be to:

 a Take the Piezo Sounder input high.

 b Take the Piezo Sounder input low.

 c Switch the Ultrasonic Transmitter on.

 d Switch the Ultrasonic Transmitter off.

An Introduction to 6502 Programming the Applications Module
Microprocessor Applications Chapter 14

LJ Technical Systems 245

Student Assessment 14 Continued …

12. The program section required to enable the DAC is:

 a LDA #$01
 STA PBDDR
 LDA #$00
 STA PBDR

 b LDA #$01
 STA PBDDR
 LDA #$01
 STA PBDR

 c LDA #$00
 STA PBDDR
 LDA #$00
 STA PBDR

 d LDA #$00
 STA PBDDR
 LDA #$01
 STA PBDR

13. For the Applications Module ADC, conversion is initiated by applying an output of:

 a logic '0' to Port B, bit 1

 b logic '1' to Port B, bit 1

 c a short negative-going pulse to Port B, bit 1

 d a short positive-going pulse to Port B, bit 1

Programming the Applications Module An Introduction to 6502
Chapter 14 Microprocessor Applications

246 LJ Technical Systems

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

Chapter 15 Stack and Subroutines

LJ Technical Systems 247

Objectives of
this Chapter

Having studied this chapter you will be able to:

 Explain the operation of a LIFO stack.

 Describe the stack save and restore instructions:
 Push
 Pull

 Explain the mechanism of subroutine calls.

 Describe the 6502 instructions:

 Jump to Subroutine
 Return from Subroutine

 Make use of MAC III Monitor Subroutines within your
own programs which will:
• write characters to the display.
• read characters from the keyboard.
• produce delays.

Equipment
Required for
this Chapter

 MAC III 6502 Microcomputer.
 Applications Module.
 Power supply.
 Keypad/display unit.
 Merlin Development System Software Pack, installed on a PC

running Windows 95 or later.
 MAC III 6502 User Manual.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

248 LJ Technical Systems

Introduction

Sometimes it is necessary to save data in a temporary store. This could be a partial
result in a calculation, or because that register is required for another purpose.
Clearly a memory location could be used to save data by direct addressing.
However, the precise location of a temporary result is often relatively unimportant,
provided the data can be retrieved reliably.

The stack is a special area of memory set aside for the storage of temporary data.
It allows rapid storage and retrieval of data.

 15.1 The Stack

The stack operates rather like a pile of documents in a tray. As sheets are placed in
the tray, only the last document will be immediately accessible. The last
document placed in the tray will be the first one removed.

In microcomputer stack terms this is called a “Last In First Out” or LIFO
structure. In a LIFO stack the exact location of data is much less important than
the order in which data words have been saved.

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 249

 15.2 The Stack Pointer

A special register called the Stack Pointer is used to "point" to the next free
location on the stack. The diagram below shows data saved on the stack and the
Stack Pointer:

MEMORY

BOTTOM OF THE STACK

TOP OF THE STACK
01F7
01F8
01F9
01FA
01FB
01FC
01FD
01FE
01FF

STACK POINTER

40
0D
40
05
04
5D
02

01F8

Clearly, the Stack Pointer will be decremented each time a new data word is
stored. The 6502 reserves Page 01 of memory (i.e. locations 0100H to 01FFH) for
use as the stack.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

250 LJ Technical Systems

 15.3 Stack Save and Restore Instructions

Data is saved on the stack by using a PUSH instruction.

 PUSH Accumulator (PHA)

This is used to save the accumulator contents on the stack. PHA performs the
following actions:

1. Copies the accumulator contents into the stack location specified by the Stack
Pointer.

2. Decrements the Stack Pointer, to point to the next free stack location.

For example:

Suppose the stack pointer contains 0180H and the following is executed:

0400 A9 LDA #$12 ;Loads the accumulator with 12H
0401 12
0402 48 PHA ;Saves the accumulator on the stack

The PHA instruction will save the value 12H at location 0180H and then decrement
the stack pointer to 017FH.

 PUSH Status Register (PHP)

This instruction is very similar to PHA, except that it is the Status Register rather
than the Accumulator which is saved on the stack.

This instruction allows the states of the flags at any point within a program to be
saved and subsequently restored. You will see why this is important a little later in
this chapter.

Data is restored from the stack by using a PULL instruction.

 PULL Accumulator (PLA)

This instruction is used to restore the accumulator from the stack. PLA performs
the following actions:

1. Increments the Stack Pointer, to point to the last byte saved on the stack.

2. Copies the contents of the stack location specified by the Stack Pointer into
the accumulator.

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 251

For example:

Suppose the stack has the contents:

 017C 9A
 017D 78
 017E 56
 017F 34
 0180 12

 Stack Pointer = 017DH

If a PLA instruction is then executed:

 Initially the Stack Pointer (SP) holds 017DH.
 The SP is incremented to 017EH.
 The contents of 017EH are copied into the accumulator.

 PULL Status Register (PLP)

Again, this instruction is very similar to PLA. The Status Register is restored from
the stack.

 Loading the Stack Pointer

The Stack Pointer register can only be loaded from the X-register. This requires
the use of the Transfer X-Register to Stack Pointer instruction (TXS).

So, for example, to load the Stack Pointer with 019EH:

0433 A2 LDX #$9E
0434 9E
0435 9A TXS

Recall that the 6502 reserves page 01H of memory for use as the stack. It is only
necessary therefore to specify the least significant byte of the required stack
pointer value (9EH in this case).

 15.3a The Stack Pointer is initially set to 01E0H. Enter the contents of the
Stack Pointer after 5 bytes have been saved on the Stack.

 15.3b The Stack Pointer is set to 0152H. Enter the hexadecimal contents of
the Stack Pointer after the instruction "PHA" has been executed.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

252 LJ Technical Systems

 15.4 Subroutines

In many programs there will be sequences of instructions which are used several
times within the program. For example the short time delay used in a number of
the Applications Module programs in previous chapters. Such a repeated section
of instructions is called a "routine". Now, rather than include the routine every
time it is required, the microprocessor allows such sequences of object code to
appear only once and then to be called upon several times within the program. A
routine which can be used in this way is called a "subroutine".

Subroutines are also often used by more than one program. Libraries of useful
routines may be complied to reduce program development time. Programs which
use subroutines are much easier to develop and understand.

RETURN

SUBROUTINE

MAIN PROGRAM

JUMP TO SUB

JUMP TO SUB

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 253

A Jump to Subroutine (JSR) instruction transfers program execution to a
subroutine.

A Return from Subroutine (RTS) instruction restores the program counter from
the point at which it left the main program. You have been using RTS at the end of
programs already. In the MAC III this allows you to return to the monitor program
so that you can examine memory locations, etc.

When a subroutine is called, the return address is automatically saved on the
Stack. At the end of a subroutine the return address is again automatically
restored from the stack. This type of structure allows multiple levels of
subroutines to be supported (sometimes called nested subroutines), where one
subroutine calls another:

JUMP TO SUB 1

FIRST LEVEL
SUBROUTINE

MAIN PROGRAM

SECOND LEVEL
SUBROUTINE

JUMP TO SUB 2

RETURN

RETURN

JUMP TO SUB 1

The first return address is saved on the stack and then the second. Since the stack
has a LIFO action, each address will be restored as it is required (i.e. second return
address then first).

Subroutines may use registers which the main program uses so it is good practice
for a subroutine to save any registers which it uses.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

254 LJ Technical Systems

 15.4a The function of a "JSR" instruction is to:

a return to a main program from a subroutine.

 b restore the Program Counter from the Stack.

 c restore the General Purpose Registers from the Stack.

 d transfer program execution to a subroutine.

We have seen how to save the Accumulator and the Status Register directly on the
stack, using the PHA and PHP instructions respectively. Other registers must first
be transferred to the Accumulator before PUSHing onto the stack.

So, to PUSH the X Register:

0421 8A TXA ;Copies X Register to the accumulator
0422 48 PHA ;Copies accumulator to current top of the stack

Similarly, to PUSH the Y Register:

0434 98 TYA ;Copies Y Register to the accumulator
0435 48 PHA ;Copies accumulator to current top of the stack

The Stack Pointer itself can also be saved on the Stack by using the Transfer Stack
Pointer to X Register (TSX) instruction:

045A BA TSX ;Copies the Stack Pointer to the X Register
045B 8A TXA ;Copies X Register to the accumulator
045C 48 PHA ;Copies accumulator to current top of the stack

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 255

It follows that these registers can all be restored from the stack. For example, to
PULL the X Register:

0476 68 PLA ;Copies contents of current top stack
 ;location into the accumulator
0477 AA TAX ;Copies the accumulator into the X Register

Similarly, to PULL the Y Register:

0491 68 PLA ;Copies contents of current top stack
 ;location into the accumulator
0492 A8 TAY ;Copies the accumulator into the Y Register

The stack pointer may also be restored from the stack, using the Transfer X
Register to Stack Pointer instruction thus:

04B5 68 PLA ;Copies contents of current top stack
 ;location into the accumulator
04B6 AA TAX ;Copies the accumulator into the
 ;X Register
04B7 9A TXS ;Copies the X Register into the Stack
 ;Pointer

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

256 LJ Technical Systems

 15.5 Worked Example

Write a subroutine which will add the contents of the X and Y registers, saving the
result in location 0500H. The previous contents of the accumulator,
X Register and Y Register must be preserved.

Solution

START

Save status,
accumulator,

X- and Y-
registers on the

stack

Add
contents of

X- and Y-
register

Save result in
location 0500H

Restore status,
accumulator, X- and Y-

registers from stack

END

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 257

The Assembly Language Program will be:

 ORG $0400 ;Defines the start address
0400 08 PHP ;Saves status register on stack
0401 48 PHA ;Saves accumulator on stack
0402 8A TXA
0403 48 PHA ;Saves X-register on stack
0404 98 TYA
0405 48 PHA ;Saves Y-register on stack
0406 86 STX $40 ;Saves X-register in temporary
0407 40 ;store, prior to addition
0408 D8 CLD
0409 18 CLC ;Conditions D- and C-flags for addition
040A 65 ADC $40 ;Accumulator already contains Y-register
040B 40 ;contents, so add to temporary store
040C 8D STA $0500 ;Saves result in location 0500H
040D 00
040E 05
040F 68 PLA
0410 A8 TAY ;Restores Y-register from stack
0411 68 PLA
0412 AA TAX ;Restores Y-register from stack
0413 68 PLA ;Restores X-register from stack
0414 28 PLP ;Restores accumulator from stack
0415 60 RTS ;Returns from subroutine

Notice that:

1. The status register is saved and then restored at the end of the routine. This
is because the CLC, CLD and ADC instructions may change the original
status register contents.

2. Registers are PULLed in the opposite order in which they were PUSHed. This
is due to the LIFO structure of the stack.

 15.5a The Stack Pointer register initially contains 0147H. Enter the
contents of the Stack Pointer after the program for Worked

Example 15.5 has been executed.

 15.6 Practical Assignment

Write a subroutine that will use the stack to exchange the contents of the X Register and the Status
Register. The Stack should be used to preserve the contents of any other registers used by the
subroutine.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

258 LJ Technical Systems

 15.6a The first two instructions in your program for Practical Assignment
15.6 are:

a PHA and PHP

 b PHA and PLP

 c PHA and TXA

 d PHP and TXA

 15.7 Worked Example

Recall the program that you wrote to activate the Piezo Sounder:

 PBDR: EQU $9000
 PBDDR: EQU $9002

 ORG $0400 ;Defines the start address
0400 A9 LDA #$20
0401 20
0402 8D STA PBDDR ;Makes Port B bit 5 (PB5)
0403 02 ;an output bit
0404 90
0405 A9 HIOUT: LDA #$20
0406 20
0407 8D STA PBDR ;Outputs a "1" on PB5
0408 00
0409 90
040A A2 LDX #$64 ;Loads count for delay
040B 64
040C CA DELAY1: DEX
040D D0 BNE DELAY1 ;Delay of 500 us
040E FD
040F A9 LDA #$00
0410 00
0411 8D LOWOUT: STA PBDR ;Outputs a "0" on PB5
0412 00
0413 90
0414 A2 LDX #$64 ;Loads count for delay
0415 64
0416 CA DELAY2: DEX
0417 D0 BNE DELAY2 ;Another delay of 500 us
0418 FD
0419 4C JMP HIOUT ;Loop back to output a
041A 05 ;"1" on PB5
041B 04

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 259

Notice that the same length of time delay has been used twice. Rewrite this
program to make use of a single subroutine, which when called provides a 500µs
time delay.

Solution

 PBDR: EQU $9000
 PBDDR: EQU $9002

 ORG $0400 ;Defines start address of
 ;main program
0400 A9 LDA #$20
0401 20
0402 8D STA PBDDR ;Makes Port B bit 5 (PB5)
0403 02 ;an output bit
0404 90
0405 A9 HIOUT: LDA #$20
0406 20
0407 8D STA PBDR ;Outputs a "1" on PB5
0408 00
0409 90
040A 20 JSR DELAY ;Call delay of 500 us
040B 00
040C 05
040D A9 LDA #$00
040E 00
040F 8D LOWOUT: STA PBDR ;Outputs a "0" on PB5
0410 00
0411 90
0412 20 JSR DELAY ;Call delay of 500 us
0413 00
0414 05
0415 4C JMP HIOUT ;Loop back to output a
0416 05 ;"1" on PB5
0417 04

;Subroutine: 500µs delay

 ORG $0500 ;Defines start address of
 ;delay subroutine
0500 A2 DELAY: LDX #$64 ;Loads count for delay
0501 64
0502 CA REDUCE: DEX
0503 D0 BNE REDUCE ;Delay of 500 us
0504 FD
0505 60 RTS ;Return to main program

 15.7a Enter the number of times that the delay subroutine is called during
each pass through the program of Worked Example 15.7.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

260 LJ Technical Systems

 15.8 MAC III Monitor Subroutines

The MAC III Monitor program includes a number of subroutines. These are
available for you to use in your own programs. A list and description of these
subroutines can be found in Appendix 2.

One of these MAC III Monitor subroutines is "WRCHAR". This subroutine
interprets the contents of the accumulator as an ASCII code and sends the
corresponding character to the display. The following exercise will make use of
this subroutine to write a given character to the display.

 15.9 Worked Example

Write a program that will display the character "H".

START

Load the
accumulator

with the ASCII
Code for "H"

Display the
contents of
accumulator

Note: The ASCII code for "H" is 48H. Other ASCII codes can be found in

Appendix 3.

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 261

The Assembly Language Program will be:

 WRCHAR: EQU $C048

 ORG $0400 ;Defines the start address
0400 A9 LDA #$48 ;Loads accumulator with
0401 48 ;the ASCII code for "H"
0402 20 JSR WRCHAR ;Call subroutine which
0403 48 ;displays the contents of
0404 C0 ;the accumulator as an
 ;ASCII character
0405 4C HERE: JMP HERE ;Wait forever - if RTS is
0406 05 ;used the MAC III monitor
0407 04 ;program will cause the
 ;display to be
 ;overwritten with "rEAdy"

 15.9a The program for Worked Example 15.9 must be modified to display
the character "Z". Enter the hexadecimal byte that the first

instruction must write to the Accumulator.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

262 LJ Technical Systems

 15.10 Worked Example

Write a program that will display the message "Hello" on the screen.

Clearly, this is an extension of the previous problem. One possible solution would
be to effectively repeat the previous program a number of times but this would be
a rather inelegant solution.

A more flexible approach is to set up a buffer in MAC III memory that contains
the necessary codes and use a looped program to display each code in turn thus:

Define buffer
start address

Load the
accumulator from

the next buffer
location

Display
contents of
accumulator

Add 1 to count

No

Is
count =
+05H?

Yes

END

Start

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 263

It is convenient to store the ASCII character codes in page zero memory, say from
location 0040H:

 0040 48 ;Code for "H"
 0041 45 ;Code for "E"
 0042 4C ;Code for "L"
 0043 4C ;Code for "L"
 0044 4F ;Code for "O"

The Assembly Language Program will be:

 WRCHAR: EQU $C048

 ORG $0400 ;Defines the start address
0400 A2 LDX #$00 ;Defines start of display
0401 00 ;buffer
0402 B5 NEXT: LDA $40,X ;Read next value into the
0403 40 ;accumulator
0404 20 JSR WRCHAR ;Call display subroutine
0405 48
0406 C0
0407 E8 INX ;Adds 1 to count
0408 E0 CPX #$05
0409 05
040A D0 BNE NEXT ;If count < 5, branch
040B F6 ;back to read next value
040C 4C HERE: JMP HERE ;Wait forever to allow
040D 0C ;steady display
040E 04

Execute the program and you should see the message "HELLO" on the display.

The program strategy outlined above could be used to display other words by
changing the contents of locations 0040H - 0044H.

However, this would be limited to words with 5 or less letters. A more useful
strategy is to continue to fetch codes for display from the buffer until the stop code
00H is fetched.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

264 LJ Technical Systems

An Assembly Language Program using this approach is shown below:

 WRCHAR: EQU $C048

 ORG $0400 ;Defines the start address
0400 A2 LDX #$00 ;Defines start of display
0401 00 ;buffer
0402 B5 NEXT: LDA $40,X ;Read next value into the
0403 40 ;accumulator
0404 F0 BEQ HERE ;If value = 0, finish
0405 07 ;display
0406 20 JSR WRCHAR ;Call display subroutine
0407 48
0408 C0
0409 E8 INX ;Adds 1 to count
040A 4C JMP NEXT ;Loop back to display
040B 02 ;next character
040C 04
040D 4C HERE: JMP HERE ;Wait forever to allow
040E 0D ;steady display
040F 04

Enter this program into MAC III memory and ensure that you have entered the
ASCII codes for "HELLO", terminated by the stop code 00H.

Execute the program and you should see the message "HELLO" on the display.

You can now easily experiment with other words by changing the contents of the
buffer from location 0040H.

The ASCII codes required are given in Appendix 3.

Make sure that you end your message with 00H. If you are running this program
via the MAC III keypad, check that your message does not exceed 8 characters,
since this is the limit of the MAC III display.

The MAC III monitor uses exactly this technique to display a number of words
(for example, "rEAdy", "APPLICAtIONS", "SELECt", etc.).

 15.10a In the program above, the instruction that tests the next character to
see if the end of the buffer has been reached is:

 a BEQ HERE

 b INX

 c JMP HERE

 d JSR WRCHAR

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 265

 15.11 Practical Assignment

Write a program that uses MAC III monitor subroutines to subtract the hexadecimal contents of
location 0501H from the contents of location 0500H and display the following on the seven-
segment displays:

Contents of

location 0500H
Contents of

location 0501H Result

 15.11a Load location 0500H with 87H and location 0501H with 39H. Run
your program for Practical Assignment 15.11 and enter the byte

shown as the result.

 15.12 Practical Assignment

Write a program, using MAC III monitor subroutines, that will produce an increasing binary count
at Port A. The count should be incremented once per second.

 15.12a In your solution to Practical Assignment 15.12, the MAC III System
subroutine that could be used to give a 1 second delay is called:

 a CRLF

 b GETIN

 c WRCHAR

 d WTNMS

 15.12b Run your program for Practical Assignment 15.12. Wait for 25
seconds and read the binary count value that is displayed at
Port A. Enter this count value as a hexadecimal number.

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

266 LJ Technical Systems

 15.13 Practical Assignment

Write a program that will sound the piezo sounder whenever the "S" key is held down on the
MAC III keypad.

This program should be run from the MAC III keypad/display. If you are using the
6502 cross assembler Terminal software you should use the 'P' command to
transfer control to the keypad/display, before running this program from the
MAC III keypad.

 15.13a In your solution to Practical Assignment 15.13, the instruction used
to check if the S (and no other) key has been pressed is a:

 a Compare

 b Decrement

 c Increment

 d Store

 15.14 Practical Assignment

Write a program, using MAC III monitor subroutines, that will allow the speed of the DC Motor to
be controlled by the "+" and "-" keys. The motor should slowly accelerate when the "+" key is
pressed, hold speed constant if no keys are pressed and decelerate when the "-" key is pressed.

 15.14a Run your program for Practical Assignment 15.14. The effect of
pressing the S key is that:

 a motor speed increases

 b motor speed decreases

 c motor stops

 d motor speed is unchanged

 15.14b In your program for Practical Assignment 15.14, Port B is configured by
writing a hexadecimal byte to Data Direction Register B. Enter

the bit number of this register which must be at logic "1".

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 267

 Student Assessment 15

1. In a LIFO stack, the last data word stored will be restored:

 a last

 b first

 c from the Stack Pointer Register

 d from the Status Register

2. The last stack location used is defined by the contents of the:

 a Data Register

 b Stack Pointer Register

 c X Register

 d Y Register

3. The Stack Pointer contains 015DH. After the instruction "PLA" has been executed,
 the Stack Pointer will contain:

 a 015CH

 b 015DH

 c 015EH

 d 015FH

4. The 6502 instruction that saves data on the stack is called:

 a POP

 b PUSH

 c PULL

 d RTS

Continued ...

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

268 LJ Technical Systems

 Student Assessment 15 Continued …

5. A sequence of object code that appears once but which may be used several times is
 called a:

 a Library

 b Section

 c Stack

 d Subroutine

6. When a subroutine is called, the return address is saved:

 a on the Stack

 b in the Stack Pointer Register

 c in the X Register

 d in the Y Register

7. The 6502 instruction that transfers program execution to a subroutine is:

 a CALL

 b GOSUB

 c JMP

 d JSR

8. The 6502 instruction that usually occurs at the end of a subroutine is:

 a RST

 b RTS

 c RET

 d RETN

An Introduction to 6502 Stack and Subroutines
Microprocessor Applications Chapter 15

LJ Technical Systems 269

 Student Assessment 15 Continued …

9. The 6502 instruction sequence that will save the X Register on the Stack is:

 a PHA
 TAX

 b PHA
 TXA

 c TAX
 PHA

 d TXA
 PHA

10. The MAC III monitor subroutine that allows ASCII characters to be written to the
 display is:

 a RDCHAR

 b WRCHAR

 c CLRSCR

 d WTNMS

11. If a key is pressed, the MAC III monitor subroutine "GETIN" will place the
 corresponding value in the:

 a Accumulator

 b Status Register

 c X Register

 d Y Register

Stack and Subroutines An Introduction to 6502
Chapter 15 Microprocessor Applications

270 LJ Technical Systems

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

Chapter 16 Interrupts

LJ Technical Systems 271

Objectives of
this Chapter

Having studied this chapter you should be able to:

 Describe the principles of interrupt and polled
 Input/Output.

 Explain the mechanisms of interrupts.

 Describe the 6502 Indirect Addressing mode.

 Use the 6502 interrupt system.

 Describe the 6502 Reset and Software Interrupt
 instruction.

 Use the auto-run feature of the MAC III system.

Equipment
Required for
this Chapter

 MAC III 6502 Microcomputer.
 Applications Module.
 Power supply.
 Keypad/display unit.
 Two shorting leads (supplied).
 Merlin Development System Software Pack, installed on a PC

running Windows 95 or later.
 MAC III 6502 User Manual.

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

272 LJ Technical Systems

 Introduction

An interrupt is a special input to a microprocessor that is examined as part of
every instruction that the microprocessor executes. When an active transition
occurs on this input, the current program is suspended.

The microprocessor will then start to execute an interrupt service subroutine. At
the end of this routine the original program is usually resumed, from the point at
which it was suspended.

The use of interrupts allows the microcomputer to respond quickly to external
events.

 16.1 Polling and Interrupts

Many peripheral devices operate at a very much slower speed than the
microprocessor. Consequently it will often be necessary for the microprocessor to
wait while the peripheral responds. There are two basic techniques to achieve this
synchronization:

 Polled Input/Output

The microprocessor periodically checks the peripheral to see if it is ready for data
transfer. This gives variable response times and also wastes microprocessor time
in needless checking.

 Interrupt Input/Output

The peripheral signals it is ready for data transfer by interrupting the
microprocessor. This has the advantage that the microprocessor does not waste
time interrogating the peripheral over and over again. The microprocessor can
actually be executing another program which is suspended when data transfer is
required (sometimes called a background program).

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 273

RETURN

MAIN PROGRAM

Interrupt
Occurs

Interrupt
Occurs
Again

INTERRUPT
SERVICE
SUBROUTINE

Interrupts allow external events to cause a specific subroutine to be executed. So,
an interrupt service subroutine can occur at any time during the execution of a
program, unlike a normal subroutine that may only occur at a fixed position within
a program sequence.

Since an interrupt may occur at any time within a program, the return address
must be saved on the stack.

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

274 LJ Technical Systems

It is possible for microcomputer systems to have multiple interrupts, so nesting of
interrupts may occur, where a second interrupt occurs while an interrupt service
subroutine is already in progress:

INTERRUPT 1
SERVICE
SUBROUTINE

MAIN PROGRAM

INTERRUPT 2
SERVICE
SUBROUTINE

RETURN

Interrupt
 1 Occurs

Interrupt
 2 Occurs

RETURN

The first return address is saved on the stack and then the second. Since the stack
has a LIFO action, each address will be restored as it is required (i.e. second return
address then first).

An interrupt service subroutine may use registers which the main program uses so
it is good practice for interrupt service subroutines to save any registers they use.

The microprocessor will always complete the instruction in progress when an
interrupt occurs before beginning the interrupt response sequence. When a
particular interrupt occurs, the corresponding interrupt vector is loaded into the
Program Counter. This vector defines the start of the appropriate interrupt service
routine.

 16.1a Usually, when an interrupt service routine has been completed:
 a the microprocessor must be reset

 b an interrupt will occur

 c the interrupted program is resumed

 d a Halt occurs

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 275

 16.2 Interrupt Mechanisms

Interrupt Masking

Certain interrupts can be "disabled" so that the microprocessor will not respond
when they occur. Interrupts that can be ignored in this way are called maskable
interrupts.

Maskable interrupts can usually be enabled or disabled by setting or clearing an
interrupt flag. In the 6502 this flag is called the Interrupt Disable Flag (I-Flag).
The I-Flag is bit 2 of the Status Register.

Other interrupts are non-maskable and must always be serviced. Interrupts of this
type are usually reserved for the most important tasks (for example, power failure
routines).

 Software Interrupts

Almost all microprocessors allow a special instruction to initiate an interrupt
response (rather than an external signal). These are called Software Interrupts. It
follows that software interrupts will be synchronous with the execution of the
interrupted program.

The 6502 software interrupt instruction is called "Break" (BRK).

 Reset

You will have already used this interrupt many times throughout this manual.
When you press and release the "Reset" key on the MAC III board, the CPU will
load the start address of the MAC III monitor program into the Program Counter
and resume the fetch and execute process.

 Return from Interrupt

Clearly, it will be necessary to terminate an interrupt service subroutine with a
RETURN instruction, to restore the program counter from the stack. This allows
the interrupted program to continue from the point at which it was interrupted.

The 6502 Return from Interrupt instruction has the mnemonic RTI.

Most interrupt service routines will terminate with an RTI instruction. One notable
exception is the reset routine. Reset routines will not normally end with a RTI
since a reset usually only occurs at initial start up or if there has been some
catastrophic software failure.

 Interrupt Priority

Some interrupts are considered to be more important than others. Consequently, a
higher priority interrupt will interrupt a lower priority interrupt service subroutine
but not vice versa. In such a case, the lower priority interrupt service subroutine
will be resumed at the end of the higher priority routine.

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

276 LJ Technical Systems

 Interrupt Response Time

Interrupts are used whenever it is necessary for the CPU to respond quickly to an
event. For example: a machine tool micro-controller must respond quickly to an
emergency stop condition.

However high the priority, no interrupt is serviced until the current instruction
has been completed. This leads to very small variations in response times.

 Interrupt Vectors

For each of the 6502 interrupt inputs there are two memory locations which hold
the start address of the interrupt service routine for that interrupt. These are called
interrupt vectors. Every microprocessor of the same model will have the same
interrupt vectors. In the 6502 these are to be found at the top of memory (FFFAH

 -
FFFFH). When a valid interrupt occurs, the values contained within these locations
are loaded into the Program Counter and the fetch/execute process is resumed.

Before we can progress further, you will need to understand a new addressing
mode which is used in Interrupt processing. This is called Absolute Indirect
Addressing:

 16.3 Absolute Indirect Addressing

This mode of addressing is frequently used to redirect interrupt vectors. We shall
meet this idea again, a little later in this chapter. The Absolute Indirect addressing
mode uses the contents of two consecutive memory locations to form the address
of the data to be acted upon. Only the JMP instruction can use this mode.

For example:

0423 6C JMP ($0532) ;Jumps to the address
0424 32 ;specified by the contents of
0425 05 ;locations 0532H and 0533H.

Location 0532H holds the low byte of the final destination address and location
0533H the high byte. Suppose the contents of these locations were:

 Location Contents

 0532H 4BH <------- Low byte of final destination address

 0533H 10H <------- High byte of final destination address

Then " JMP ($0532) " will actually make a Jump to location 104BH. Interrupt
vectors act in just the same way, defining the start address for an interrupt routine.
Indirect addressing can also be used to redirect an interrupt, if the first instruction
of an interrupt service routine is an indirect Jump.

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 277

 16.3a If location 0789H contains 50H and location 078AH contains 00H, the
instruction "JMP ($0789)" will cause program execution to
continue from location:

a 0050H

b 0789H

c 078AH

d 5000H

 16.4 6502 Interrupt Flags

There are two 6502 flags associated with interrupts:

 Interrupt Disable Flag (I-Flag)

This flag is used to enable or disable maskable interrupts. If the I-flag is set (i.e. if
I=1) then maskable interrupts will not be acknowledged.

There are two 6502 instructions that can be used to enable or disable maskable
interrupts:

 CLI Clears Interrupt Disable Flag to allow maskable interrupts to be

acknowledged.

 SEI Sets Interrupt Disable Flag to prevent maskable interrupts from being
acknowledged.

These instructions allow the user to define periods when maskable interrupts are to
be acknowledged.

 Break Flag (B-Flag)

This flag is set when a Software Interrupt instruction (BRK) occurs. We shall
examine this instruction a little later in this chapter.

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

278 LJ Technical Systems

 16.5 6502 Interrupt System

The 6502 has single maskable, non-maskable and software interrupts. There is
also a reset input. All 6502 interrupt vectors are located at the top of memory
(FFFAH to FFFFH).

Non-Maskable Interrupt NMI

This is an active low, edge triggered input. This means that it is activated by a
transition from a logic "1" to a logic "0" on the NMI pin of the 6502.

The response to a NMI is listed below:

1. The high byte of the program counter is pushed onto the stack.

2. The low byte of the program counter is pushed onto the stack.

3. The status register is pushed onto the stack.

4. The interrupt mask flag is set, to prevent further interrupts from being
 serviced.

5. The contents of location FFFAH are fetched and placed in the low byte of the
program counter.

6. The contents of location FFFBH are fetched and placed in the high byte of the
program counter.

7. Program execution continues from the location pointed to by the program
counter.

Note: The 6502 will automatically save the contents of the status register on the

stack when a non-maskable interrupt occurs (step 3).

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 279

MAIN PROGRAM

MAIN PROGRAM

NMI

PC & SR -> Stack
PC = (FFFA)

JMP (0200)

Stack -> SR & PC

Service routine
RTI

In the case of the MAC III, the NMI interrupt vectors have been redirected thus:

 User NMI Vector: Location 0200H: Low byte of interrupt vector
 Location 0201H: High byte of interrupt vector

These should be used, rather than FFFAH and FFFBH, for user programs.

 16.5a In the 6502, maskable interrupts are prevented from interrupting the
processor by:

a applying a logic '0' to the IRQ pin

b applying a logic '1' to the IRQ pin

c clearing the I-flag

d setting the I-flag

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

280 LJ Technical Systems

 16.6 Worked Example

Write a program that will load location 0040H with the value 80H. An NMI
interrupt routine is also required which will reload location 0040H with 01H.

The main program and interrupt service routine will be trivial:

Main Program:

 ORG $0400 ;Main program start address
0400 A9 LDA #$80
0401 80
0402 85 STA $40 ;Saves marker to location
0403 40 ;0040H
0404 4C HERE: JMP HERE ;Wait forever - dummy
0405 04 ;program
0406 04

The NMI routine can be placed anywhere in memory:

 ORG $0500 ;NMI routine start address
0500 A9 LDA #$01
0501 01
0502 85 STA $40 ;Changes marker in
0503 40 ;location 0040H
0504 40 RTI ;Return to dummy program

Interrupt Vectors:

 ORG $0200
0200 00 WORD $0500 ;Points to location
0201 05 ;0500H

Note that the 'WORD' statement is used by the 6502 Cross Assembler to store a
two-byte value in memory (low byte first). If you are not using the 6502 Cross
Assembler software, the contents of memory locations $0200 and $0201 must be
entered using the memory edit facility at the MAC III keypad.

Load the above program, NMI routine and user interrupt vectors into
MAC III memory.

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 281

You will be able to produce a non-maskable interrupt by using one of the short
jumper leads supplied with this manual. Connect the lead to 0V but do not
connect the other end to NMI for the moment:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A15

A0

.

.

.

.

.

.

.

D0

D7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2

49 50

.

.

.

.

.

.

.

.

.

SYNC
R/W
S.O.
RDY
RST
NMI
IRQ
NRDS
NWDS
Ø2
0V

.

.

.
0V.

.
CLK QUAL

TRIG QUAL

Run the main program (from 0400H). Press reset and examine the contents of
location 0040H. You will find this to be 80H, since no interrupt has occurred.

Run the main program again and carefully touch the free end of the jumper lead
on the NMI pin. Press the reset key and examine the contents of location 0040H.
You should find this to be 01H, since a NMI has now occurred.

 16.6a The program for Worked Example 16.6 is to be modified so that the
NMI routine starts at location 0580H. Enter the address for the
memory location that must be changed.

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

282 LJ Technical Systems

 16.7 Practical Assignment

Write a program that will activate the piezo sounder if a non-maskable interrupt occurs.

 16.7a In your program for Practical Assignment 16.7, the program section
that produces an output on the piezo sounder is within the:

a Main Program

b NMI Routine

c Software Interrupt

d Delay Subroutine

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 283

 Maskable Interrupt (IRQ)

This is also called "Interrupt Request".

IRQ is an active low, level triggered input. This means that it is activated by a

logic "0" on the IRQ pin of the 6502.

The response to an IRQ is listed below:

1. The I-Flag is tested: If this flag is set, the 6502 will effectively ignore the
interrupt request and proceed with the next instruction in sequence. If the I-
flag is clear then the interrupt request must be acknowledged and steps 2 to 8
below are carried out:

2. The high byte of the program counter is pushed onto the stack.

3. The low byte of the program counter is pushed onto the stack.

4. The status register is pushed onto the stack.

5. The interrupt mask flag is set, to prevent further interrupts from being
serviced.

6. The contents of location FFFEH are fetched and placed in the low byte of the
program counter.

7. The contents of location FFFFH are fetched and placed in the high byte of the
program counter.

8. Program execution continues from the location pointed to by the program
counter.

Note: Just like the NMI , when an IRQ occurs, the 6502 will automatically

save the contents of the status register on the stack.

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

284 LJ Technical Systems

MAIN PROGRAM

MAIN PROGRAM

IRQ

PC & SR -> Stack
SR = SR + I
PC=(FFFE)

JMP (0202)

Service routine

RTI

Stack ->
SR & PC

Again, like the NMI vectors, the MAC III monitor program redirects the IRQ
interrupt vectors thus:

User IRQ Vector: Location 0202H: Low byte of interrupt vector

 Location 0203H: High byte of interrupt vector

So these are the vectors for user programs, rather than FFFEH and FFFFH.

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 285

 16.8 Worked Example

Write a program that will load location 0040H with the value 55H. An IRQ
interrupt routine is also required that will reload location 0040H with 88H.

This is very similar to the previous Worked Example but with two important
differences:

1. The user interrupt vectors are now at locations 0202H and 0203H.

2. The main program must clear the interrupt disable flag so that the IRQ can
 be acknowledged.

Again, the main program and interrupt service routine are quite trivial:

Main Program:

 ORG $0400 ;Main program start address
0400 58 CLI ;Clears interrupt disable
 ;flag to allow maskable
 ;interrupts
0401 A9 LDA #$55
0402 55
0403 85 STA $40 ;Saves marker to location
0404 40 ;0040H
0405 4C HERE: JMP HERE ;Wait forever - dummy
0406 05 ;program
0407 04

The IRQ routine can again be placed anywhere in memory:

 ORG $0500 ;IRQ routine start address
0500 A9 LDA #$88
0501 88
0502 85 STA $40 ;Changes marker in
0503 40 ;location 0040H
0504 40 RTI ;Return to dummy program

Interrupt Vectors:

 ORG $0202
0202 00 WORD $0500 ;Points to location
0203 05 ;0500H

Enter the above program, IRQ routine and user interrupt vectors into MAC III
memory.

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

286 LJ Technical Systems

You will be able to produce a maskable interrupt by again using one of the short
jumper leads supplied with this manual. Connect the lead to 0V but do not
connect the other end to IRQ for the time being:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A15

A0

.

.

.

.

.

.

.

D0

D7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2

49 50

.

.

.

.

.

.

.

.

.

SYNC
R/W
S.O.
RDY
RST
NMI
IRQ
NRDS
NWDS
Ø2
0V

.

.

.
0V.

.
CLK QUAL

TRIG QUAL

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 287

Run the main program (from 0400H). Press reset and examine the contents of
location 0040H. You will find this to be 55H, since no interrupt has occurred.

Run the main program again and carefully touch the free end of the jumper lead
on the IRQ pin. Press the reset key and examine the contents of location 0040H.

You should find this now to be 88H, since an IRQ has occurred.

Change the instruction at location 0400H to SEI (Opcode 78H) and run the main
program again. If you press rest and then examine the contents of location 0040H
you will find that these are 55H again, indicating that an interrupt has not
occurred.

Run the main program again but this time produce a maskable interrupt by
carefully touching the free end of the jumper lead on the IRQ pin. Press the reset
key and examine the contents of location 0040H. You should now find that the
contents of location 0040H are still 55H. This is because the new instruction at
location 0400H has prevented maskable interrupts from being acknowledged.

 16.8a The effect of removing the instruction at location 0400H in the
program for Worked Example 16.8 would be to:

a change the marker value saved

b load different interrupt vectors

c prevent the main program from being interrupted

d have no effect

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

288 LJ Technical Systems

 16.9 Worked Example

Write a program that will load location 0040H with the value AAH. If a NMI

interrupt occurs, location 0040H must be reloaded with the value 0FH. If an IRQ
interrupt occurs, location 0040H must be reloaded with the value 71H. This is a
combination of Worked Examples 16.6 and 16.8:

Main Program:

 ORG $0400 ;Main program start address
0400 58 CLI ;Enable maskable interrupts
0401 A9 LDA #$AA ;Save marker value in
0402 AA ;location 0040H
0403 85 STA $40
0404 40
0405 4C HERE: JMP HERE ;Wait forever - dummy
0406 05 ;main program
0407 04

Interrupt Vectors:

 ORG $0200
0200 00 WORD $0500 ;NMI vectors - 0500H
0201 05
0202 20 WORD $0520 ;IRQ vectors - 0520H
0203 05

NMI routine:

 ORG $0500 ;NMI routine start address
0500 A9 LDA #$0F ;Saves marker for NMI
0501 0F ;in location 0040H
0502 85 STA $40
0503 40
0504 40 RTI ;Returns to main program

IRQ routine:

 ORG $0520 ;IRQ routine start address
0520 A9 LDA #$71 ;Saves marker for IRQ
0521 71 ;in location 0040H
0522 85 STA $40
0523 40
0524 40 RTI ;Returns to main program

Load the program, vectors and interrupt routines into MAC III memory and run
the main program. Press reset and check that location 0040H contains AAH,
indicating that no interrupts have occurred.

Run the main program again and then use the short jumper lead to produce a non-
maskable interrupt. This can be done by again connecting to 0V and carefully
touching the free end on the NMI pin.

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 289

You will now find that location 0040H contains 0FH. This shows that a NMI has
been acknowledged. Run the main program again and use the jumper lead to
produce a maskable interrupt by connecting to 0V and carefully touching the free
end on the IRQ pin. Examine the contents of location 0040H. You will find that

location 0040H contains 71H. This shows that the IRQ has been acknowledged.

 16.9a The effect of removing the instruction at location 0400H in the
program for Worked Example 16.9 would be to:

a change the marker value saved

b cause continuous interrupts

c prevent the main program from being interrupted

d only allow a NMI to interrupt the main program

 16.10 Practical Assignment

Write a program that will continually output 99H at Port A. If a non-maskable interrupt occurs,
the piezo sounder should also be activated.

 16.10a In your program for Practical Assignment 16.10, the section of the
program that configures the Ports is the:

a Main Program

b NMI routine

c IRQ routine

d Delay Subroutine

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

290 LJ Technical Systems

 16.11 Software Interrupt (BRK)

Recall that a Software Interrupt is an instruction that causes an interrupt response.
The interrupts we have seen up to now are caused by a logic level change on a
6502 pin (hardware interrupt).

The 6502 Break instruction (BRK) has an interrupt response that is almost
identical to the IRQ response (they even share the same interrupt vectors).

The differences are:

1. When a BRK occurs, the B-Flag is set. This allows a BRK and an IRQ to be
distinguished.

2. Setting the Interrupt Disable Flag cannot mask a BRK.

The BRK instruction is useful for debugging or to return control to the monitor
program. You will have already seen this in the MAC III breakpoint facility.

 16.12 Reset

This interrupt input has priority over all others. The reset response is initiated by a
logic low (0) to high (1) transition on the RESET pin of the 6502.

The response to such a transition is as follows:

1. A delay of 6 clock cycles occurs. This is to allow internal initializations to
take place.

2. The Interrupt Disable Flag is set to prevent maskable interrupts from being
acknowledged.

3. The contents of location FFFCH are fetched and placed in the low byte of the
program counter.

4. The contents of location FFFDH are fetched and placed in the high byte of the
program counter.

5. Program execution continues from the location pointed to by the program
counter.

Note that the present program counter contents are not pushed onto the stack. This
is because it will not be necessary to return from a reset. Examine the contents of
locations FFFCH and FFFDH in the MAC III.

You should find that these form the address F022H. So, the MAC III monitor
program starts at location F022H.

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 291

Note: Depending upon the version of the MAC III monitor, you may find
different values in locations FFFCH and FFFDH. However, these locations
will always contain the start address for the MAC III monitor.

If you examine MAC III memory from location F022H, you can see the first few
instructions of the monitor program:

F022 78 SEI ;Disable maskable interrupts
F023 D8 CLD ;Set to Hexadecimal Arithmetic
F024 A9 LDA #$00
F025 00
F026 8D STA $0266 ;Clear location 0266H
F027 66
F028 02
F029 A2 LDX #$80
F02A 80
F02B 9A TXS ;Set Stack Pointer to 0180H

The MAC III allows three types of reset:

Cold Reset Takes place when power is applied to MAC III board. This
type of reset will set variables to their start-up values and
clear the contents of RAM.

Monitor Restart Takes place when the reset switch is pressed twice (with a
delay of about 0.5 seconds). This type of reset will set
variables to their start-up values but not clear the contents of
RAM.

Warm Reset Takes place whenever the reset switch is pressed. This type of
reset will not change any variables or programs.

 16.12a The interrupt vectors for a 6502 Software Interrupt (BRK) are at
locations:

 a FFF8H and FFF9H

b FFFAH and FFFBH

c FFFCH and FFFDH

d FFFEH and FFFFH

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

292 LJ Technical Systems

 16.12b The 6502 interrupt which does not save the current program counter
contents on the stack is:

 a BRK

b IRQ

c NMI

d Reset

 16.13 Auto-Run Programs

Normally the "rEAdy" message is displayed for all types of restart, provided the
MAC III is not connected to a Personal Computer. However, it is possible to
configure MAC III such that any given program in RAM or EPROM can be
automatically executed upon completion of loading from cassette or RS232 port.

To auto-run a RAM program, location 0206H must be loaded with a non-zero
value and then the MAC III must be reset.

Try this now by loading location 0206H with 01H and entering a program (via the
keypad) which only consists of an unconditional jump to the Applications Module
demonstration program thus:

0206 01

0400 4C JMP $F600
0401 00
0402 F6

Now, press the reset switch and the Applications Module program will run.

An auto-run program may be stopped by a double closure of the reset key
(Monitor Restart).

Programs may also be auto-run from EPROM. The start address for the user
EPROM is A000H. The first few bytes of an auto-run EPROM must be:

 A000 53 ASCII code for "S"
 A001 58 ASCII code for "X"
 A002 XX First byte of program

Clearly then, the reset routine must examine the contents of location 0206H (to see
if a RAM auto-start is required) and also check locations A000H and A001H (to
see if a ROM auto-start is required).

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 293

Initialize
monitor restart

variables

Initialize
Cold start
variables

Cold
or Warm

start

Power On
or RESET

Initialization

Warm Cold

Double
Reset?

Loop at
failed

address

RAM
Test OK

SX
EPROM

Terminal?
Set Console

device to
Terminal

Set Console
device to
Keypad

Keypad?

Flash Status
LED

Initialize
warm start
variables

Auto-run
RAM

No

Yes

Yes

No

No Yes Yes

Yes

Yes

No

Disable interrupt
Initialize /t1
Set stack pointer

No Execute program
From A002H

Execute program
From 0400H Start selected

console’s monitor

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

294 LJ Technical Systems

 16.13a The MAC III location that is used to control the Auto-Run facility is:

a 0200H

b 0206H

c FFFCH

d FFFEH

 16.14 Practical Assignment

Write a program that displays "HELLO" on the MAC III display. If a non-maskable interrupt
occurs the display should change to "NON MASK". If a maskable interrupt occurs the display
should change to "MASKABLE".

 16.14a In your program for Practical Assignment 16.14, the number of
different interrupt service routines is:

a 1

b 2

c 3

d 4

 16.14b Your program for Practical Assignment 16.14 is to be modified such
that it will not respond to maskable interrupts. The part of the

program that must be altered is the:

a main program

 b IRQ routine

 c NMI routine

 d display subroutine

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 295

 Student Assessment 16

1. An input to a microprocessor that causes it to suspend the current program is called:

 a a Break

 b an Interrupt

 c a Stop

 d a Wait

2. Usually, when an interrupt service routine has been completed:

 a the microprocessor must be reset

 b an interrupt will occur

 c the interrupted program is resumed

 d a Break occurs

3. The process of a microprocessor periodically checking a peripheral to see if it is ready
 for data transfer is called:

 a Nested Input/Output

 b Interrupt Input/Output

 c Stack Input/Output

 d Polled Input/Output

4. The main advantage of Interrupt Input/Output, as compared with Polled Input/Output
 is that it:

 a does not waste microprocessor time

 b is more reliable

 c can handle errors more effectively

 d prevents bus conflicts

Continued ...

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

296 LJ Technical Systems

Student Assessment 16 Continued …

5. An interrupt service routine that has been interrupted by a second interrupt is an
 example of:

 a Interrupt Input/Output

 b Maskable Interrupts

 c Nested Interrupts

 d Software Interrupts

6. Interrupt inputs that the microprocessor may ignore are said to be:

 a High Priority

 b Maskable

 c Nested

 d Non-maskable

7. The 6502 instruction that allows maskable interrupts to be acknowledged is:

 a CLI

 b BRK

 c RTI

 d SEI

8. The 6502 instruction mnemonics for an indirect Jump to the location pointed to by
 locations 0400H and 0401H are:

 a JMP $0040

 b JMP ($0040)

 c JMP $0400

 d JMP ($0400)

An Introduction to 6502 Interrupts
Microprocessor Applications Chapter 16

LJ Technical Systems 297

Student Assessment 16 Continued …

9. The vector for the 6502 NMI interrupt is at locations:

 a FFF8H and FFF9H

 b FFFAH and FFFBH

 c FFFCH and FFFDH

 d FFFEH and FFFFH

10. The 6502 instruction that is usually found at the end of an interrupt service routine is:

 a BRK

 b RTI

 c RTS

 d JMP ($0200)

11. The highest priority 6502 interrupt is:

 a BRK

 b IRQ

 c NMI

 d Reset

12. The 6502 addressing mode used to redirect interrupt vectors is called:

 a absolute

 b absolute indirect

 c absolute indexed

 d zero page

Interrupts An Introduction to 6502
Chapter 16 Microprocessor Applications

298 LJ Technical Systems

An Introduction to 6502 Standard Programming Sheet
Microprocessor Applications Appendix 1

Appendix 1 Standard Programming Sheet

LJ Technical Systems 299

Address

Machine Code

Label

Assembly Language

Comments

Standard Programming Sheet An Introduction to 6502
Appendix 1 Microprocessor Applications

300 LJ Technical Systems

An Introduction to 6502 MAC III System Calls
Microprocessor Applications Appendix 2

Appendix 2 MAC III System Calls

LJ Technical Systems 301

Introduction

This section lists the system subroutines available to the user. The calls are
divided into three groups:

System calls A collection of routines some of which interface with
 various devices on the MAC board. Most of the calls in
 this group are also used by the monitor itself.

Math A collection of ASCII, decimal and
system calls hexadecimal conversion routines.

User A collection of routines commonly
system calls required by user programs.

The following points apply to all monitor system calls:

 Input and output parameters use the various registers and memory addresses
indicated in the description for each call, registers not specified are
unaffected. Memory addresses within the system workspace are also used by
many of the calls.

 If an error condition arises during a call the routine will exit with the carry
flag set and an error code number in the Accumulator.

 The label PTR is a 16-bit pointer stored as two bytes at address 0000 (low
byte) and 0001 (high byte). It is used as a pointer in many of the system
calls. When using the LJ 6502 cross assembler software a label, PTR, could
be set with an equate statement at the start of your program:

 PTR equ 0

 The label NUMBER is a 16-bit store used by the number conversion
routines. It is arranged as two 8-bit bytes at addresses 0002 (low byte) and
0003 (high byte). When using the LJ 6502 cross assembler software a label,
NUMBER, could be set with an equate statement at the start of your
program:

 NUMBER equ 2

MAC III System Calls An Introduction to 6502
Appendix 2 Microprocessor Applications

302 LJ Technical Systems

Device Interface System Calls

Device interface system calls read from or write to a specified device. The device
number is always passed in the accumulator. The device numbers for each device
are:

 Device Name Number
 /t1 Terminal port 1 0
 /t2 Terminal port 2 1
 /p Centronics port 2
 /kd Keypad/display unit 3
 /cas Cassette interface 4

Transmitting a carriage return character (0D) to the keypad/display unit causes
subsequent data to appear starting from the leftmost LED display. Transmitting a
linefeed (0A) or a formfeed (0C) clears the LED display and performs an
automatic carriage return.

If more than eight characters are sent to the keypad/display, the display scrolls to
the left to accommodate the new characters.

READ Read raw data from a device

Address: C000
Input: Acc Device number
 Y Maximum number of bytes to read
 PTR Address of input buffer
Output: Y Number of bytes actually read.
Function: Reads the specified number of bytes from the device number
 given.

Data is returned exactly as read from the device, without additional processing
such as backspace or line delete. The routine exits when a carriage return
character, 0D, is entered or when Y bytes have been read.

The number of bytes actually read is returned in the Y register.

If the ESCape character (1B) is entered, the error code 25 will be returned with the
carry flag set.

An Introduction to 6502 MAC III System Calls
Microprocessor Applications Appendix 2

LJ Technical Systems 303

READLN Read edited data from a device

Address: C004
Input: Acc Device number
 Y Maximum number of bytes to read
 PTR Address of input buffer
Output: Y Number of bytes actually read
Function: Similar to READ except that that it reads data until a carriage

return character is encountered, line editing also takes place, ie.
line delete, backspace.

The last byte to be entered must be a carriage return. If more than the maximum
number of characters are entered, subsequent characters, except for carriage
return, line delete or backspace, will be ignored. For example, a READLN call of
one byte will accept only a carriage return and ignore any other characters.

WRITE Write raw data to device

Address: C008
Input: Acc Device number
 Y Number of bytes to write
 PTR Address of buffer
Output: Y Actual number of bytes written
Function: Outputs Y bytes to the specified device, data is written with no

processing or editing.

WRITLN Write edited data to a file

Address: C00C
Input: Acc Device number
 Y Maximum number of bytes to write
 PTR Address of buffer
Output: Y Actual number of bytes written
Function: Outputs Y bytes from the buffer to the specified device.

This call is similar to WRITE except that it writes data until a carriage return
character is encountered, or Y bytes are written. Line editing takes place. If the
device supports auto-linefeed, then a linefeed is sent after each carriage return.
The extra linefeeds are not included in the character count.

MAC III System Calls An Introduction to 6502
Appendix 2 Microprocessor Applications

304 LJ Technical Systems

EXIT Terminate a program

Address: C010
Input: Acc Error code to return to calling program
Output: None
Function: Exits the program and returns control back to the MAC

monitor. If the Acc register contains a non-zero value, the error
message corresponding to that error code will be displayed on
the terminal screen.

PERR Print error message

Address: C014
Input: Acc Error code
Output: None
Function: Prints an error message to the terminal.

The error number is printed as two decimal bytes, for example:

 lda #50
 jsr $c014

Displays: ERROR 50 :

If the error is a standard MAC error, an error message string is also printed, for
example:

 lda #$14
 jsr $c014

Prints: ERROR 20 : Device not ready

If the error code is zero, this routine does nothing.

An Introduction to 6502 MAC III System Calls
Microprocessor Applications Appendix 2

LJ Technical Systems 305

MATH SYSTEM CALLS

The math system calls make use of the 16-bit number store NUMBER at address
0002-0003 previously described.

AHEXTO Convert ASCII hex to value

Address: C020
Input: PTR Address of string
Output: NUMBER Value
 PTR Updated to point to first non hex character
Error output: Carry set if no hex digits, error code 06 returned.
Function: Converts the ASCII hexadecimal string pointed to by PTR, into

a value in NUMBER. Conversion stops at the first non-
hexadecimal digit.

ADECTO Convert ASCII decimal to value

Address: C024
Input: PTR Address of string
Output: NUMBER Value
 PTR Updated to point to first non hex character
Error output: Carry set if no decimal digits, error code 06 returned.
Function: Converts the ASCII decimal string pointed to by PTR, into a

hexadecimal value in NUMBER. Conversion stops at the first
non-decimal digit.

TOAHEX Convert value to ASCII hex

Address: C028
Input: NUMBER Value to be converted
 Y Number of digits output required
 PTR Address of buffer
Output: ASCII string in callers buffer
 PTR Updated past string
Function: Converts the value in NUMBER into an ASCII hexadecimal

string in the buffer pointed to by PTR.

If the Y register specifies more digits than the number represents, leading zeroes
will be inserted. If Y specifies less digits than the converted number, the least
significant digits will be returned.

MAC III System Calls An Introduction to 6502
Appendix 2 Microprocessor Applications

306 LJ Technical Systems

TOADEC Convert value to ASCII decimal

Address: C02C
Input: NUMBER Value to be converted
 Y Number of digits output required
 PTR Address of buffer
Output: ASCII string in callers buffer
 PTR Updated past string
Function: Converts the value in NUMBER into an ASCII decimal string

in the buffer pointed to by PTR.

If the Y register specifies more digits than the number represents, leading zeroes
will be inserted. If Y specifies less digits than the converted number, the least
significant digits will be returned.

USER SYSTEM CALLS

The user trap calls are a collection of routines which provide a more convenient
interface to the operating system. The standard output device is the device through
which the user is currently interacting. The system calls in this section will output
to the terminal, if the MAC is being used through the terminal, or to the
keypad/display if the MAC is being used through the keypad/display unit. The
current standard output device is called the console device.

RDCHAR Read one character

Address: C040
Input: None
Output: Acc Character code
Function: Reads one character from the keyboard buffer.

This call uses READ to get one character from the console device. If the keypad is
the console device, then the ASCII key code is returned (i.e. the keypad M key is
returned as ASCII 77, or "M"). If an escape character is returned by READ, then
the escape character (1B) is returned in the A register and not an escape error. You
cannot generate an escape character from the keypad.

An Introduction to 6502 MAC III System Calls
Microprocessor Applications Appendix 2

LJ Technical Systems 307

RDBYTE Read ASCII hexadecimal byte

Address: C044
Input: None
Output: Acc Hexadecimal byte
Function: Read a 2 digit hexadecimal number from the console device.

If the console device is the terminal this function is implemented using READLN,
a two digit number followed by a carriage return is required. (normal line editing
is allowed) If the console device is the keypad/display this function is
implemented using READ to read two of the hexadecimal keys in succession.

An illegal number error is returned for non-hex entry.

WRCHAR Write one character

Address: C048
Input: Acc Character code
Output: None
Function: Writes the character in Acc to the console.

This function is implemented using WRITE to send the character to the console
device.

WRBYTE Write byte in ASCII hexadecimal

Address: C04C
Input: Acc Hexadecimal byte to write
Output: None
Function: Writes the hexadecimal byte as two ASCII characters to the

console.

This function is implemented using TOAHEX and WRITE to send the byte to the
console device.

MAC III System Calls An Introduction to 6502
Appendix 2 Microprocessor Applications

308 LJ Technical Systems

GETIN Get character from keyboard

Address: C050
Input: None
Output: Acc Character code
 C Carry set if no character available
Function: GETIN is used to see if there is a key pressed on the keypad or

a character in the RS232 receive buffer, (depending on which
console device is active).

If no character is available, the call returns with the carry flag set. If a character is
available its ASCII code is returned in the Acc and the carry is cleared. The
character is not echoed to the display.

WT1MS Wait for one millisecond

Address: C054
Input: None
Output: None
Function: Delays for one millisecond.

This function uses a software delay loop which has been calculated to produce an
accurate delay of 1ms. Interrupt service routines may cause the delay length to
change.

WTNMS Wait for n milliseconds

Address: C058
Input: Acc Number of milliseconds to wait
Output: None
Function: Waits for Acc * milliseconds.

This function effectively calls WT1MS the number of times contained in the
accumulator.

An Introduction to 6502 MAC III System Calls
Microprocessor Applications Appendix 2

LJ Technical Systems 309

CRLF Output carriage return, linefeed

Address: C05C
Input: None
Output: None
Function: Outputs carriage return, linefeed sequence.

This function is implemented using Write to write a carriage return and linefeed
character to standard output.

CLRSCR Clear screen

Address: C060
Input: None
Output: None
Function: Clears the console screen.

This function is implemented by writing ASCII FormFeed (0C) to standard output.
On the keypad/display unit, all LEDs are cleared and the cursor is reset to the
leftmost LED.

LEDON Switch on Status LED

Address: C064
Input: None
Output: None
Function: Switches on the status LED.

LEDOFF Switch off the Status LED

Address: C068
Input: None
Output: None
Function: Switches off the status LED. This function is the complement

of LEDON.

MAC III System Calls An Introduction to 6502
Appendix 2 Microprocessor Applications

310 LJ Technical Systems

An Introduction to 6502 ASCII Codes
Microprocessor Applications Appendix 3

Appendix 3 ASCII Codes

LJ Technical Systems 311

 Character ASCII Character ASCII Character ASCII
 Code (hex) Code (hex) Code (hex)

 space> 20 @ 40 ` 60
 ! 21 A 41 a 61
 " 22 B 42 b 62
 # 23 C 43 c 63
 $ 24 D 44 d 64
 % 25 E 45 e 65
 & 26 F 46 f 66
 ' 27 G 47 g 67
 (28 H 48 h 68
) 29 I 49 i 69
 * 2A J 4A j 6A
 + 2B K 4B k 6B
 , 2C L 4C l 6C
 - 2D M 4D m 6D
 . 2E N 4E n 6E
 / 2F O 4F o 6F
 0 30 P 50 p 70
 1 31 Q 51 q 71
 2 32 R 52 r 72
 3 33 S 53 s 73
 4 34 T 54 t 74
 5 35 U 55 u 75
 6 36 V 56 v 76
 7 37 W 57 w 77
 8 38 X 58 x 78
 9 39 Y 59 y 79
 : 3A Z 5A z 7A
 ; 3B [5B { 7B
 < 3C \ 5C | 7C
 = 3D] 5D } 7D
 > 3E ^ 5E ~ 7E
 ? 3F _ 5F

ASCII Codes An Introduction to 6502
Appendix 3 Microprocessor Applications

312 LJ Technical Systems

